Chains of factorizations in orders of global fields
Alfred Geroldinger (1997)
Colloquium Mathematicae
Similarity:
Alfred Geroldinger (1997)
Colloquium Mathematicae
Similarity:
Alfred Geroldinger (1997)
Colloquium Mathematicae
Similarity:
Florian Kainrath (1999)
Colloquium Mathematicae
Similarity:
Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation for some irreducible elements , (ii) k ∈ L.
Krzysztof Frączek (2000)
Fundamenta Mathematicae
Similarity:
We study ergodicity of cylinder flows of the form , , where is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of have some good properties, then is ergodic. Moreover, there exists such that if is a function with zero integral such that is of bounded...
Janusz Pawlikowski, Ireneusz Recław (1995)
Fundamenta Mathematicae
Similarity:
We parametrize Cichoń’s diagram and show how cardinals from Cichoń’s diagram yield classes of small sets of reals. For instance, we show that there exist subsets N and M of and continuous functions such that • N is and , the collection of all vertical sections of N, is a basis for the ideal of measure zero subsets of ; • M is and is a basis for the ideal of meager subsets of ; •. From this we derive that for a separable metric space X, •if for all Borel (resp. ) sets...
Martin Helm (1993)
Acta Arithmetica
Similarity:
Introduction. An old conjecture of P. Erdős repeated many times with a prize offer states that the counting function A(n) of a -sequence A satisfies . The conjecture was proved for r=2 by P. Erdős himself (see [5]) and in the cases r=4 and r=6 by J. C. M. Nash in [4] and by Xing-De Jia in [2] respectively. A very interesting proof of the conjecture in the case of all even r=2k by Xing-De Jia is to appear in the Journal of Number Theory [3]. Here we present a different, very short proof...
Ramez Sami (1999)
Fundamenta Mathematicae
Similarity:
We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is . We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
Michael Levin (1996)
Fundamenta Mathematicae
Similarity:
Let X and Y be compacta and let f:X → Y be a k-dimensional map. In [5] Pasynkov stated that if Y is finite-dimensional then there exists a map such that dim (f × g) = 0. The problem that we deal with in this note is whether or not the restriction on the dimension of Y in the Pasynkov theorem can be omitted. This problem is still open. Without assuming that Y is finite-dimensional Sternfeld [6] proved that there exists a map such that dim (f × g) = 1. We improve this result of Sternfeld...
Michael Levin (1995)
Fundamenta Mathematicae
Similarity:
Let X be a compactum and let be a countable family of pairs of disjoint subsets of X. Then A is said to be essential on Y ⊂ X if for every closed separating and the intersection is not empty. So A is inessential on Y if there exist closed separating and such that does not intersect Y. Properties of inessentiality are studied and applied to prove: Theorem. For every countable family of pairs of disjoint open subsets of a compactum X there exists an open set G ∩ X on...
Boban Veličković (1999)
Fundamenta Mathematicae
Similarity:
Using Tsirelson’s well-known example of a Banach space which does not contain a copy of or , for p ≥ 1, we construct a simple Borel ideal such that the Borel cardinalities of the quotient spaces and are incomparable, where is the summable ideal of all sets A ⊆ ℕ such that . This disproves a “trichotomy” conjecture for Borel ideals proposed by Kechris and Mazur.
Luis Gallardo (2000)
Acta Arithmetica
Similarity:
1. Introduction. The Waring problem for polynomial cubes over a finite field F of characteristic 2 consists in finding the minimal integer m ≥ 0 such that every sum of cubes in F[t] is a sum of m cubes. It is known that for F distinct from ₂, ₄, , each polynomial in F[t] is a sum of three cubes of polynomials (see [3]). If a polynomial P ∈ F[t] is a sum of n cubes of polynomials in F[t] such that each cube A³ appearing in the decomposition has degree < deg(P)+3, we say that P is...
Jun Wu (2000)
Acta Arithmetica
Similarity:
1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) , where is a sequence of positive integers satisfying d₁(x) ≥ 2 and for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and to denote...