Chains of factorizations in weakly Krull domains

Alfred Geroldinger

Colloquium Mathematicae (1997)

  • Volume: 72, Issue: 1, page 53-81
  • ISSN: 0010-1354

How to cite

top

Geroldinger, Alfred. "Chains of factorizations in weakly Krull domains." Colloquium Mathematicae 72.1 (1997): 53-81. <http://eudml.org/doc/210456>.

@article{Geroldinger1997,
author = {Geroldinger, Alfred},
journal = {Colloquium Mathematicae},
keywords = {catenary degree; factorizations; weakly Krull domains; finite catenary degree},
language = {eng},
number = {1},
pages = {53-81},
title = {Chains of factorizations in weakly Krull domains},
url = {http://eudml.org/doc/210456},
volume = {72},
year = {1997},
}

TY - JOUR
AU - Geroldinger, Alfred
TI - Chains of factorizations in weakly Krull domains
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 1
SP - 53
EP - 81
LA - eng
KW - catenary degree; factorizations; weakly Krull domains; finite catenary degree
UR - http://eudml.org/doc/210456
ER -

References

top
  1. [A-A-Z] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19. Zbl0727.13007
  2. [A-M-Z] D. D. Anderson, J. L. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. B (7) 6 (1992), 613-630. Zbl0773.13004
  3. [An] D. F. Anderson, A general theory of class groups, Comm. Algebra 16 (1988), 805-847. Zbl0648.13002
  4. [B-H] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Univ. Press, 1993. 
  5. [B-I-V] R. Brüske, F. Ischebeck and F. Vogel, Kommutative Algebra, B. I. Wissenschaftsverlag, 1989. 
  6. [C-P] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups II, Providence, R.I., 1967. Zbl0178.01203
  7. [Ge1] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529. 
  8. [Ge2] A. Geroldinger, On the arithmetic of certain not integrally closed noetherian integral domains, Comm. Algebra 19 (1991), 685-698. Zbl0723.20038
  9. [Ge3] A. Geroldinger, T-block monoids and their arithmetical applications to certain integral domains, ibid. 22 (1994), 1603-1615. Zbl0809.13013
  10. [Ge4] A. Geroldinger, On the structure and arithmetic of finitely primary monoids, Czechoslovak Math. J., to appear. 
  11. [Ge5] A. Geroldinger, Chains of factorizations in orders of global fields, this volume, 83-102. Zbl0874.11073
  12. [G-HK] A. Geroldinger and F. Halter-Koch, Arithmetical theory of monoid homomorphisms, Semigroup Forum 48 (1994), 333-362. Zbl0805.20057
  13. [G-L] A. Geroldinger and G. Lettl, Factorization problems in semigroups, ibid. 40 (1990), 23-38. Zbl0693.20063
  14. [G-S] A. Geroldinger and R. Schneider, On Davenport's constant, J. Combin. Theory Ser. A 61 (1992), 147-152. Zbl0759.20008
  15. [Gi1] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Appl. Math. 90, Queen's Univ., Kingston, Ont., 1992. 
  16. [Gi2] R. Gilmer, Commutative Semigroup Rings, The Univ. of Chicago Press, 1984. 
  17. [HK1] F. Halter-Koch, Halbgruppen mit Divisorentheorie, Exposition. Math. 8 (1990), 27-66. Zbl0698.20054
  18. [HK2] F. Halter-Koch, Finiteness theorems for factorizations, Semigroup Forum 44 (1992), 112-117. Zbl0751.20046
  19. [HK3] F. Halter-Koch, Divisor theories with primary elements and weakly Krull domains, Boll. Un. Mat. Ital. B (7) 9 (1995), 417-441. Zbl0849.20041
  20. [HK4] F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains, J. Théor. Nombres Bordeaux 7 (1995), 367-385. Zbl0844.11068
  21. [HK5] F. Halter-Koch, Zur Zahlen- und Idealtheorie eindimensionaler noetherscher Integritätsbereiche, J. Algebra 136 (1991), 103-108. 
  22. [Ka] I. Kaplansky, Commutative Rings, Polygonal Publishing House, 1994. 
  23. [Ma] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986. 
  24. [Ne] J. Neukirch, Algebraische Zahlentheorie, Springer, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.