Displaying similar documents to “Metric Sobolev spaces”

Definitions of Sobolev classes on metric spaces

Bruno Franchi, Piotr Hajłasz, Pekka Koskela (1999)

Annales de l'institut Fourier

Similarity:

There have been recent attempts to develop the theory of Sobolev spaces W 1 , p on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case p = 1 .

Poincaré inequalities and Sobolev spaces.

Paul MacManus (2002)

Publicacions Matemàtiques

Similarity:

Our understanding of the interplay between Poincaré inequalities, Sobolev inequalities and the geometry of the underlying space has changed considerably in recent years. These changes have simultaneously provided new insights into the classical theory and allowed much of that theory to be extended to a wide variety of different settings. This paper reviews some of these new results and techniques and concludes with an example on the preservation of Sobolev spaces by the maximal function. ...

Hölder quasicontinuity of Sobolev functions on metric spaces.

Piotr Hajlasz, Juha Kinnunen (1998)

Revista Matemática Iberoamericana

Similarity:

We prove that every Sobolev function defined on a metric space coincides with a Hölder continuous function outside a set of small Hausdorff content or capacity. Moreover, the Hölder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Malý [Ma1] to the Sobolev spaces on metric spaces [H1].

Bilipschitz embeddings of metric spaces into euclidean spaces.

Stephen Semmes (1999)

Publicacions Matemàtiques

Similarity:

When does a metric space admit a bilipschitz embedding into some finite-dimensional Euclidean space? There does not seem to be a simple answer to this question. Results of Assouad [A1], [A2], [A3] do provide a simple answer if one permits some small ("snowflake") deformations of the metric, but unfortunately these deformations immediately disrupt some basic aspects of geometry and analysis, like rectifiability, differentiability, and curves of finite length. Here we discuss a (somewhat...

Subelliptic Poincaré inequalities: the case p < 1.

Stephen M. Buckley, Pekka Koskela, Guozhen Lu (1995)

Publicacions Matemàtiques

Similarity:

We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.