Some cardinal generalizations of pseudocompactness
Teklehaimanot Retta (1993)
Czechoslovak Mathematical Journal
Similarity:
Teklehaimanot Retta (1993)
Czechoslovak Mathematical Journal
Similarity:
Maddalena Bonanzinga, Maria Cuzzupé, Bruno Pansera (2014)
Open Mathematics
Similarity:
Two variations of Arhangelskii’s inequality for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.
Robert A. Herrmann (1980)
Časopis pro pěstování matematiky
Similarity:
Oleg Okunev, Angel Tamariz-Mascarúa (2000)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A space is if is either weakly pseudocompact or Lindelöf locally compact. We prove: (1) every locally weakly pseudocompact space is truly weakly pseudocompact if it is either a generalized linearly ordered space, or a proto-metrizable zero-dimensional space with for every ; (2) every locally bounded space is truly weakly pseudocompact; (3) for , the -Lindelöfication of a discrete space of cardinality is weakly pseudocompact if .