Displaying similar documents to “Weakly Hausdorff spaces and the cardinality of topological spaces”

On the cardinality of n-Urysohn and n-Hausdorff spaces

Maddalena Bonanzinga, Maria Cuzzupé, Bruno Pansera (2014)

Open Mathematics

Similarity:

Two variations of Arhangelskii’s inequality X 2 χ ( X ) - L ( X ) for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.

Some results and problems about weakly pseudocompact spaces

Oleg Okunev, Angel Tamariz-Mascarúa (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is if X is either weakly pseudocompact or Lindelöf locally compact. We prove: (1) every locally weakly pseudocompact space is truly weakly pseudocompact if it is either a generalized linearly ordered space, or a proto-metrizable zero-dimensional space with χ ( x , X ) > ω for every x X ; (2) every locally bounded space is truly weakly pseudocompact; (3) for ω < κ < α , the κ -Lindelöfication of a discrete space of cardinality α is weakly pseudocompact if κ = κ ω .