On the cardinality of n-Urysohn and n-Hausdorff spaces
Maddalena Bonanzinga; Maria Cuzzupé; Bruno Pansera
Open Mathematics (2014)
- Volume: 12, Issue: 2, page 330-336
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMaddalena Bonanzinga, Maria Cuzzupé, and Bruno Pansera. "On the cardinality of n-Urysohn and n-Hausdorff spaces." Open Mathematics 12.2 (2014): 330-336. <http://eudml.org/doc/269388>.
@article{MaddalenaBonanzinga2014,
abstract = {Two variations of Arhangelskii’s inequality \[\left| X \right| \leqslant 2^\{\chi (X) - L(X)\}\]
for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.},
author = {Maddalena Bonanzinga, Maria Cuzzupé, Bruno Pansera},
journal = {Open Mathematics},
keywords = {Urysohn number of a space; Hausdorff number of a space; \[cl^\mathcal \{H\}\]
-operator; θ-closure; \[cl\_\theta ^\mathcal \{H\}\]
-operator; Relative Lindelöf number; Almost Lindelöf degree of a space; Urysohn number of space; Hausdorff number of space; relative Lindelöf number; almost Lindelöf degree of a space; -Urysohn pseudocharacter; -Hausdorff pseudocharacter},
language = {eng},
number = {2},
pages = {330-336},
title = {On the cardinality of n-Urysohn and n-Hausdorff spaces},
url = {http://eudml.org/doc/269388},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Maddalena Bonanzinga
AU - Maria Cuzzupé
AU - Bruno Pansera
TI - On the cardinality of n-Urysohn and n-Hausdorff spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 330
EP - 336
AB - Two variations of Arhangelskii’s inequality \[\left| X \right| \leqslant 2^{\chi (X) - L(X)}\]
for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.
LA - eng
KW - Urysohn number of a space; Hausdorff number of a space; \[cl^\mathcal {H}\]
-operator; θ-closure; \[cl_\theta ^\mathcal {H}\]
-operator; Relative Lindelöf number; Almost Lindelöf degree of a space; Urysohn number of space; Hausdorff number of space; relative Lindelöf number; almost Lindelöf degree of a space; -Urysohn pseudocharacter; -Hausdorff pseudocharacter
UR - http://eudml.org/doc/269388
ER -
References
top- [1] Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)
- [2] Arhangel’skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 1995, 36(2), 303–325
- [3] Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull., 1988, 31(2), 153–158 http://dx.doi.org/10.4153/CMB-1988-023-4 Zbl0646.54005
- [4] Bonanzinga M., On the Hausdorff number of a topological space, Houston J. Math., 2013, 39(3), 1013–1030 Zbl1290.54003
- [5] Bonanzinga M., Cammaroto F., Matveev M.V., On a weaker form of countable compactness, Quaest. Math., 2007, 30(4), 407–415 http://dx.doi.org/10.2989/16073600709486209 Zbl1144.54012
- [6] Bonanzinga M., Cammaroto F., Matveev M., On the Urysohn number of a topological space, Quaest. Math., 2011, 34(4), 441–446 http://dx.doi.org/10.2989/16073606.2011.640456 Zbl1274.54016
- [7] Bonanzinga M., Cammaroto F., Matveev M., Pansera B., On weaker forms of separability, Quaest. Math., 2008, 31(4), 387–395 http://dx.doi.org/10.2989/QM.2008.31.4.7.611 Zbl1155.54328
- [8] Bonanzinga M., Pansera B., On the Urysohn number of a topological space II, Quaest. Math. (in press) Zbl1164.54352
- [9] Carlson N., The weak Lindelöf degree and homogeneity (manuscript) Zbl1263.54005
- [10] Carlson N.A., Porter J.R., Ridderbos G.J., On cardinality bounds for homogeneous spaces and G κ-modification of a space, Topology Appl., 2012, 159(13), 2932–2941 http://dx.doi.org/10.1016/j.topol.2012.05.004 Zbl1267.54006
- [11] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
- [12] Gryzlov A.A., Stavrova D.N., Topological spaces with a selected subset - cardinal invariants and inequalities, C. R. Acad. Bulgare Sci., 1993, 46(7), 17–19 Zbl0809.54002
- [13] Hodel R.E., Cardinal functions I, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 1–61
- [14] Hodel R.E., Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc., 1991, 111(2), 567–575 http://dx.doi.org/10.1090/S0002-9939-1991-1039531-7 Zbl0713.54007
- [15] Hodel R.E., Arhangel’skiĭ’s solution to Alexandroff’s problem: A survey, Topology Appl., 2006, 153(13), 2199–2217 http://dx.doi.org/10.1016/j.topol.2005.04.011 Zbl1099.54001
- [16] Ramírez-Páramo A., Tapia-Bonilla N.T., A generalization of a generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 2007, 48(1), 177–187 Zbl1199.54034
- [17] Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343 Zbl1027.54006
- [18] Veličko N.V., H-closed topological spaces, Mat. Sb. (N.S.), 1966, 70(112)(1), 98–112 (in Russian)
- [19] Willard S., Dissanayeke U.N.B., The almost Lindelöf degree, Canad. Math. Bull., 1984, 27(4), 452–455 http://dx.doi.org/10.4153/CMB-1984-070-2 Zbl0551.54003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.