On the cardinality of n-Urysohn and n-Hausdorff spaces

Maddalena Bonanzinga; Maria Cuzzupé; Bruno Pansera

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 330-336
  • ISSN: 2391-5455

Abstract

top
Two variations of Arhangelskii’s inequality X 2 χ ( X ) - L ( X ) for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.

How to cite

top

Maddalena Bonanzinga, Maria Cuzzupé, and Bruno Pansera. "On the cardinality of n-Urysohn and n-Hausdorff spaces." Open Mathematics 12.2 (2014): 330-336. <http://eudml.org/doc/269388>.

@article{MaddalenaBonanzinga2014,
abstract = {Two variations of Arhangelskii’s inequality \[\left| X \right| \leqslant 2^\{\chi (X) - L(X)\}\] for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.},
author = {Maddalena Bonanzinga, Maria Cuzzupé, Bruno Pansera},
journal = {Open Mathematics},
keywords = {Urysohn number of a space; Hausdorff number of a space; \[cl^\mathcal \{H\}\] -operator; θ-closure; \[cl\_\theta ^\mathcal \{H\}\] -operator; Relative Lindelöf number; Almost Lindelöf degree of a space; Urysohn number of space; Hausdorff number of space; relative Lindelöf number; almost Lindelöf degree of a space; -Urysohn pseudocharacter; -Hausdorff pseudocharacter},
language = {eng},
number = {2},
pages = {330-336},
title = {On the cardinality of n-Urysohn and n-Hausdorff spaces},
url = {http://eudml.org/doc/269388},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Maddalena Bonanzinga
AU - Maria Cuzzupé
AU - Bruno Pansera
TI - On the cardinality of n-Urysohn and n-Hausdorff spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 330
EP - 336
AB - Two variations of Arhangelskii’s inequality \[\left| X \right| \leqslant 2^{\chi (X) - L(X)}\] for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.
LA - eng
KW - Urysohn number of a space; Hausdorff number of a space; \[cl^\mathcal {H}\] -operator; θ-closure; \[cl_\theta ^\mathcal {H}\] -operator; Relative Lindelöf number; Almost Lindelöf degree of a space; Urysohn number of space; Hausdorff number of space; relative Lindelöf number; almost Lindelöf degree of a space; -Urysohn pseudocharacter; -Hausdorff pseudocharacter
UR - http://eudml.org/doc/269388
ER -

References

top
  1. [1] Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian) 
  2. [2] Arhangel’skii A.V., A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 1995, 36(2), 303–325 
  3. [3] Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull., 1988, 31(2), 153–158 http://dx.doi.org/10.4153/CMB-1988-023-4 Zbl0646.54005
  4. [4] Bonanzinga M., On the Hausdorff number of a topological space, Houston J. Math., 2013, 39(3), 1013–1030 Zbl1290.54003
  5. [5] Bonanzinga M., Cammaroto F., Matveev M.V., On a weaker form of countable compactness, Quaest. Math., 2007, 30(4), 407–415 http://dx.doi.org/10.2989/16073600709486209 Zbl1144.54012
  6. [6] Bonanzinga M., Cammaroto F., Matveev M., On the Urysohn number of a topological space, Quaest. Math., 2011, 34(4), 441–446 http://dx.doi.org/10.2989/16073606.2011.640456 Zbl1274.54016
  7. [7] Bonanzinga M., Cammaroto F., Matveev M., Pansera B., On weaker forms of separability, Quaest. Math., 2008, 31(4), 387–395 http://dx.doi.org/10.2989/QM.2008.31.4.7.611 Zbl1155.54328
  8. [8] Bonanzinga M., Pansera B., On the Urysohn number of a topological space II, Quaest. Math. (in press) Zbl1164.54352
  9. [9] Carlson N., The weak Lindelöf degree and homogeneity (manuscript) Zbl1263.54005
  10. [10] Carlson N.A., Porter J.R., Ridderbos G.J., On cardinality bounds for homogeneous spaces and G κ-modification of a space, Topology Appl., 2012, 159(13), 2932–2941 http://dx.doi.org/10.1016/j.topol.2012.05.004 Zbl1267.54006
  11. [11] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989 
  12. [12] Gryzlov A.A., Stavrova D.N., Topological spaces with a selected subset - cardinal invariants and inequalities, C. R. Acad. Bulgare Sci., 1993, 46(7), 17–19 Zbl0809.54002
  13. [13] Hodel R.E., Cardinal functions I, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 1–61 
  14. [14] Hodel R.E., Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc., 1991, 111(2), 567–575 http://dx.doi.org/10.1090/S0002-9939-1991-1039531-7 Zbl0713.54007
  15. [15] Hodel R.E., Arhangel’skiĭ’s solution to Alexandroff’s problem: A survey, Topology Appl., 2006, 153(13), 2199–2217 http://dx.doi.org/10.1016/j.topol.2005.04.011 Zbl1099.54001
  16. [16] Ramírez-Páramo A., Tapia-Bonilla N.T., A generalization of a generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin., 2007, 48(1), 177–187 Zbl1199.54034
  17. [17] Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343 Zbl1027.54006
  18. [18] Veličko N.V., H-closed topological spaces, Mat. Sb. (N.S.), 1966, 70(112)(1), 98–112 (in Russian) 
  19. [19] Willard S., Dissanayeke U.N.B., The almost Lindelöf degree, Canad. Math. Bull., 1984, 27(4), 452–455 http://dx.doi.org/10.4153/CMB-1984-070-2 Zbl0551.54003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.