The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Domains of biregularity in Clifford analysis”

A note on Costara's paper

Armen Edigarian (2004)

Annales Polonici Mathematici

Similarity:

We show that the symmetrized bidisc 𝔾₂ = {(λ₁+λ₂,λ₁λ₂):|λ₁|,|λ₂| < 1} ⊂ ℂ² cannot be exhausted by domains biholomorphic to convex domains.

Lempert theorem for strongly linearly convex domains

Łukasz Kosiński, Tomasz Warszawski (2013)

Annales Polonici Mathematici

Similarity:

In 1984 L. Lempert showed that the Lempert function and the Carathéodory distance coincide on non-planar bounded strongly linearly convex domains with real-analytic boundaries. Following his paper, we present a slightly modified and more detailed version of the proof. Moreover, the Lempert Theorem is proved for non-planar bounded strongly linearly convex domains.

Convexity, C-convexity and Pseudoconvexity Изпъкналост, c-изпъкналост и псевдоизпъкналост

Nikolov, Nikolai (2011)

Union of Bulgarian Mathematicians

Similarity:

Николай М. Николов - Разгледани са характеризации на различни понятия за изпъкналост, като тези понятия са сравнени. We discuss different characterizations of various notions of convexity as well as we compare these notions. *2000 Mathematics Subject Classification: 32F17.