Displaying similar documents to “ N -widths for singularly perturbed problems”

N -widths for singularly perturbed problems

Martin Stynes, R. Bruce Kellogg (2002)

Mathematica Bohemica

Similarity:

Kolmogorov N -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the N -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.

Some remarks concerning stabilization techniques for convection--diffusion problems

Brandner, Marek, Knobloch, Petr

Similarity:

There are many methods and approaches to solving convection--diffusion problems. For those who want to solve such problems the situation is very confusing and it is very difficult to choose the right method. The aim of this short overview is to provide basic guidelines and to mention the common features of different methods. We place particular emphasis on the concept of linear and non-linear stabilization and its implementation within different approaches.

Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory

Salah Badraoui (1999)

Applicationes Mathematicae

Similarity:

We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.