Riemann surfaces and spin structures
Michael F. Atiyah (1971)
Annales scientifiques de l'École Normale Supérieure
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Michael F. Atiyah (1971)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Sadok Kallel, Denis Sjerve (2010)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
We investigate the action of the automorphism group of a closed Riemann surface of genus at least two on its set of theta characteristics (or spin structures). We give a characterization of those surfaces admitting a non-trivial automorphism fixing either all of the spin structures or just one. The case of hyperelliptic curves and of the Klein quartic are discussed in detail.
Jarolím Bureš (1993)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this paper some relation among the Dirac operator on a Riemannian spin-manifold , its projection on some embedded hypersurface and the Dirac operator on with respect to the induced (called standard) spin structure are given.
Martin Cadek, Jirí Vanzura (1997)
Publicacions Matemàtiques
Similarity:
Let ξ be an oriented 8-dimensional vector bundle. We prove that the structure group SO(8) of ξ can be reduced to S(2) or S(2) · S(1) if and only if the vector bundle associated to ξ via a certain outer automorphism of the group Spin(8) has 3 linearly independent sections or contains a 3-dimensional subbundle. Necessary and sufficient conditions for the existence of an S(2)- structure in ξ over a closed connected spin manifold of dimension 8 are also given in terms of characteristic classes. ...