Displaying similar documents to “Impossible Einstein-Weyl geometries”

Weyl submersions of Weyl manifolds

Fumio Narita (2007)

Colloquium Mathematicae

Similarity:

We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.

Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics

David M J. Calderbank, Henrik Pedersen (2000)

Annales de l'institut Fourier

Similarity:

We study the Jones and Tod correspondence between selfdual conformal 4 -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl 3 -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that...

Spinor equations in Weyl geometry

Buchholz, Volker

Similarity:

This paper deals with Dirac, twistor and Killing equations on Weyl manifolds with C -spin structures. A conformal Schrödinger-Lichnerowicz formula is presented and used to derive integrability conditions for these equations. It is shown that the only non-closed Weyl manifolds of dimension greater than 3 that admit solutions of the real Killing equation are 4-dimensional and non-compact. Any Weyl manifold of dimension greater than 3, that admits a real Killing spinor has to be Einstein-Weyl. ...

Einstein-Weyl structures on lightlike hypersurfaces

Cyriaque Atindogbe, Lionel Bérard-Bergery, Carlos Ogouyandjou (2013)

Open Mathematics

Similarity:

We study Weyl structures on lightlike hypersurfaces endowed with a conformal structure of certain type and specific screen distribution: the Weyl screen structures. We investigate various differential geometric properties of Einstein-Weyl screen structures on lightlike hypersurfaces and show that, for ambient Lorentzian space ℝ1n+2 and a totally umbilical screen foliation, there is a strong interplay with the induced (Riemannian) Weyl-structure on the leaves.

Selfdual Einstein hermitian four-manifolds

Vestislav Apostolov, Paul Gauduchon (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of P 2 and H 2 are hermitian.