Displaying similar documents to “Some features of the nodal recovery of gradients from finite element approximations which produces superconvergence”

On discontinuous Galerkin method and semiregular family of triangulations

Aleš Prachař (2006)

Applications of Mathematics

Similarity:

Discretization of second order elliptic partial differential equations by discontinuous Galerkin method often results in numerical schemes with penalties. In this paper we analyze these penalized schemes in the context of quite general triangular meshes satisfying only a semiregularity assumption. A new (modified) penalty term is presented and theoretical properties are proven together with illustrative numerical results.

Finite element methods on non-conforming grids by penalizing the matching constraint

Eric Boillat (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

A continuous finite element method with face penalty to approximate Friedrichs' systems

Erik Burman, Alexandre Ern (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A continuous finite element method to approximate Friedrichs' systems is proposed and analyzed. Stability is achieved by penalizing the jumps across mesh interfaces of the normal derivative of some components of the discrete solution. The convergence analysis leads to optimal convergence rates in the graph norm and suboptimal of order ½ convergence rates in the -norm. A variant of the method specialized to Friedrichs' systems associated with elliptic PDE's in mixed...