Generalized holomorphic functions and Clifford analysis.
Obolashvili, E. (1997)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
Obolashvili, E. (1997)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
Blaya, Ricardo Abreu, Reyes, Juan Bory, Peña, Dixan Peña, Sommen, Frank (2008)
Boundary Value Problems [electronic only]
Similarity:
Abreu-Blaya, Ricardo, Bory-Reyes, Juan, Bosch, Paul (2010)
Boundary Value Problems [electronic only]
Similarity:
Jan Persson (1976)
Journées équations aux dérivées partielles
Similarity:
Tutschke, Wolfgang (2002)
Boletín de la Asociación Matemática Venezolana
Similarity:
Blaya, Ricardo Abreu, Reyes, Juan Bory, Brackx, Fred, De Knock, Bram, De Schepper, Hennie, Peña, Dixan Peña, Sommen, Frank (2008)
Boundary Value Problems [electronic only]
Similarity:
François Trèves (1969)
Bulletin de la Société Mathématique de France
Similarity:
Koh, E.K., Li, C.K. (1993)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Hongfen Yuan (2019)
Czechoslovak Mathematical Journal
Similarity:
Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.