On representations of real analytic functions by monogenic functions
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 997-1013
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYuan, Hongfen. "On representations of real analytic functions by monogenic functions." Czechoslovak Mathematical Journal 69.4 (2019): 997-1013. <http://eudml.org/doc/294807>.
@article{Yuan2019,
abstract = {Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.},
author = {Yuan, Hongfen},
journal = {Czechoslovak Mathematical Journal},
keywords = {monogenic function; inhomogeneous Dirac equation; inhomogeneous poly-Dirac equation; Almansi's formula of infinite order; Clifford analysis},
language = {eng},
number = {4},
pages = {997-1013},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On representations of real analytic functions by monogenic functions},
url = {http://eudml.org/doc/294807},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Yuan, Hongfen
TI - On representations of real analytic functions by monogenic functions
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 997
EP - 1013
AB - Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.
LA - eng
KW - monogenic function; inhomogeneous Dirac equation; inhomogeneous poly-Dirac equation; Almansi's formula of infinite order; Clifford analysis
UR - http://eudml.org/doc/294807
ER -
References
top- Al-Yasiri, Z. R., Gürlebeck, K., 10.1002/mma.3847, Math. Methods Appl. Sci. 39 (2016), 4056-4068. (2016) Zbl1357.30034MR3536522DOI10.1002/mma.3847
- Aronszajn, N., Creese, T. M., Lipkin, L. J., Polyharmonic Functions, Oxford Mathematical Monographs, Oxford University Press, Oxford (1983). (1983) Zbl0514.31001MR0745128
- Bondarenko, B. A., Operator Algorithms in Differential Equations, Izdatel'stvo Fan Uzbekskoj SSR, Tashkent (1984), Russian. (1984) Zbl0551.34001MR0745129
- Brackx, F., Delanghe, R., Sommen, F., Clifford Analysis, Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston (1982). (1982) Zbl0529.30001MR0697564
- Brackx, F., Schepper, H. De, Eelbode, D., Souček, V., 10.1063/1.2991024, Int. Conf. on Numerical Analysis and Applied Mathematics 2008 T. Simos et al. AIP Conference Proceedings 1048, American Institute of Physics, Melville (2008), 697-700. (2008) Zbl1179.30051DOI10.1063/1.2991024
- Constales, D., Grob, D., Kraußhar, R. S., 10.1016/j.jmaa.2009.05.001, J. Math. Anal. Appl. 358 (2009), 281-293. (2009) Zbl1167.35326MR2532506DOI10.1016/j.jmaa.2009.05.001
- Delanghe, R., Sommen, F., Souček, V., 10.1007/978-94-011-2922-0, Mathematics and Its Applications 53, Kluwer Academic Publishers, Dordrecht (1992). (1992) Zbl0747.53001MR1169463DOI10.1007/978-94-011-2922-0
- Howe, R., 10.2307/2001418, Trans. Am. Math. Soc. 313 (1989), 539-570. (1989) Zbl0674.15021MR0986027DOI10.2307/2001418
- Kähler, U., 10.1007/BF03042225, Adv. Appl. Clifford Algebr. 11 (2001), 305-318. (2001) Zbl1221.35280MR2106727DOI10.1007/BF03042225
- Karachik, V. V., Polynomial solutions to systems of partial differential equations with constant coefficients, Yokohama Math. J. 47 (2000), 121-142. (2000) Zbl0971.35014MR1763777
- Karachik, V. V., 10.1016/S0022-247X(03)00583-3, J. Math. Anal. Appl. 287 (2003), 577-592. (2003) Zbl1039.31009MR2024341DOI10.1016/S0022-247X(03)00583-3
- Karachik, V. V., Method of Normalized Systems of Functions, Izd. Tsentr Yuzhno-Ural'skiĭ Gosudarstvennyĭ Universitet, Chelyabinsk (2014), Russian. (2014) Zbl1297.35005
- Karachik, V. V., 10.1134/S0012266115080078, Differ. Equ. 51 (2015), 1033-1042 English. Russian original translation from Differ. Uravn. 51 2015 1038-1047. (2015) Zbl1331.35118MR3404090DOI10.1134/S0012266115080078
- Karachik, V. V., Turmetov, B., Solvability of some Neumann-type boundary value problems for biharmonic equations, Electron. J. Differ. Equ. 217 (2017), Paper No. 218, 17 pages. (2017) Zbl1371.35074MR3711171
- Ku, M., Wang, D., 10.1002/mma.1368, Math. Methods Appl. Sci. 34 (2011), 418-427. (2011) Zbl1218.30138MR2791483DOI10.1002/mma.1368
- Ryan, J., 10.2307/2154813, Trans. Am. Math. Soc. 347 (1995), 1331-1341. (1995) Zbl0829.30030MR1249888DOI10.2307/2154813
- Sommen, F., Jancewicz, B., 10.1007/BF02788022, J. Anal. Math. 71 (1997), 59-74. (1997) Zbl0883.30041MR1454243DOI10.1007/BF02788022
- Yuan, H. F., 10.1186/s13661-016-0730-4, Bound. Value Probl. 2016 (2016), Article ID 222, 16 pages. (2016) Zbl1358.30021MR3589586DOI10.1186/s13661-016-0730-4
- Yuan, H. F., 10.1007/s40315-016-0166-y, Comput. Methods Funct. Theory 16 (2016), 699-715. (2016) Zbl1366.58008MR3558379DOI10.1007/s40315-016-0166-y
- Yuan, H. F., Karachik, V. V., 10.3846/13926292.2015.1112856, Math. Model. Anal. 20 (2015), 768-781. (2015) MR3427166DOI10.3846/13926292.2015.1112856
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.