Displaying similar documents to “An application of principal bundles to coloring of graphs and hypergraphs”

Color-bounded hypergraphs, V: host graphs and subdivisions

Csilla Bujtás, Zsolt Tuza, Vitaly Voloshin (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set = E₁,...,Eₘ, together with integers s i and t i satisfying 1 s i t i | E i | for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge E i satisfies s i | φ ( E i ) | t i . The hypergraph ℋ is colorable if it admits at least one proper coloring. We consider hypergraphs ℋ over a “host graph”, that means a graph G on the same vertex set X as ℋ, such that each E i induces a connected subgraph in G....

Localization of jumps of the point-distinguishing chromatic index of K n , n

Mirko Horňák, Roman Soták (1997)

Discussiones Mathematicae Graph Theory

Similarity:

The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of K n , n is found.

Graph colorings with local constraints - a survey

Zsolt Tuza (1997)

Discussiones Mathematicae Graph Theory

Similarity:

We survey the literature on those variants of the chromatic number problem where not only a proper coloring has to be found (i.e., adjacent vertices must not receive the same color) but some further local restrictions are imposed on the color assignment. Mostly, the list colorings and the precoloring extensions are considered. In one of the most general formulations, a graph G = (V,E), sets L(v) of admissible colors, and natural numbers c v for the vertices v ∈ V are given, and the question...

Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs

Éric Sopena (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H . The oriented chromatic number of an undirected graph G is then the greatest oriented chromatic number of its orientations. In this paper, we introduce the new notion of the upper oriented chromatic number of an undirected graph G, defined as the minimum order of an oriented graph U such that every orientation G of G admits a homomorphism to U . We give...

On the order of certain close to regular graphs without a matching of given size

Sabine Klinkenberg, Lutz Volkmann (2007)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a { d , d + k } -graph, if one vertex has degree d + k and the remaining vertices of G have degree d . In the special case of k = 0 , the graph G is d -regular. Let k , p 0 and d , n 1 be integers such that n and p are of the same parity. If G is a connected { d , d + k } -graph of order n without a matching M of size 2 | M | = n - p , then we show in this paper the following: If d = 2 , then k 2 ( p + 2 ) and (i) n k + p + 6 . If d 3 is odd and t an integer with 1 t p + 2 , then (ii) n d + k + 1 for k d ( p + 2 ) , (iii) n d ( p + 3 ) + 2 t + 1 for d ( p + 2 - t ) + t k d ( p + 3 - t ) + t - 3 , (iv) n d ( p + 3 ) + 2 p + 7 for k p . If d 4 is even, then (v) n d + k + 2 - η for k d ( p + 3 ) + p + 4 + η , (vi) n d + k + p + 2 - 2 t = d ( p + 4 ) + p + 6 for k = d ( p + 3 ) + 4 + 2 t and p 1 ,...

On subgraphs without large components

Glenn G. Chappell, John Gimbel (2017)

Mathematica Bohemica

Similarity:

We consider, for a positive integer k , induced subgraphs in which each component has order at most k . Such a subgraph is said to be k -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a k -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for...

3-consecutive c-colorings of graphs

Csilla Bujtás, E. Sampathkumar, Zsolt Tuza, M.S. Subramanya, Charles Dominic (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number ( χ ̅ ) 3 C C ( G ) of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with ( χ ̅ ) 3 C C ( G ) k for k = 3 and k = 4.

Two variants of the size Ramsey number

Andrzej Kurek, Andrzej Ruciński (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Given a graph H and an integer r ≥ 2, let G → (H,r) denote the Ramsey property of a graph G, that is, every r-coloring of the edges of G results in a monochromatic copy of H. Further, let m ( G ) = m a x F G | E ( F ) | / | V ( F ) | and define the Ramsey density m i n f ( H , r ) as the infimum of m(G) over all graphs G such that G → (H,r). In the first part of this paper we show that when H is a complete graph Kₖ on k vertices, then m i n f ( H , r ) = ( R - 1 ) / 2 , where R = R(k;r) is the classical Ramsey number. As a corollary we derive a new proof of the result credited...

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

The chromatic equivalence class of graph B n - 6 , 1 , 2 ¯

Jianfeng Wang, Qiongxiang Huang, Chengfu Ye, Ruying Liu (2008)

Discussiones Mathematicae Graph Theory

Similarity:

By h(G,x) and P(G,λ) we denote the adjoint polynomial and the chromatic polynomial of graph G, respectively. A new invariant of graph G, which is the fourth character R₄(G), is given in this paper. Using the properties of the adjoint polynomials, the adjoint equivalence class of graph B n - 6 , 1 , 2 is determined, which can be regarded as the continuance of the paper written by Wang et al. [J. Wang, R. Liu, C. Ye and Q. Huang, A complete solution to the chromatic equivalence class of graph B n - 7 , 1 , 3 ¯ , Discrete...

Remarks on partially square graphs, hamiltonicity and circumference

Hamamache Kheddouci (2001)

Discussiones Mathematicae Graph Theory

Similarity:

Given a graph G, its partially square graph G* is a graph obtained by adding an edge (u,v) for each pair u, v of vertices of G at distance 2 whenever the vertices u and v have a common neighbor x satisfying the condition N G ( x ) N G [ u ] N G [ v ] , where N G [ x ] = N G ( x ) x . In the case where G is a claw-free graph, G* is equal to G². We define σ ° = m i n x S d G ( x ) : S i s a n i n d e p e n d e n t s e t i n G * a n d | S | = t . We give for hamiltonicity and circumference new sufficient conditions depending on σ° and we improve some known results.