Displaying similar documents to “The rank of vector fields of Grassmannian manifolds”

On Buchsbaum bundles on quadric hypersurfaces

Edoardo Ballico, Francesco Malaspina, Paolo Valabrega, Mario Valenzano (2012)

Open Mathematics

Similarity:

Let E be an indecomposable rank two vector bundle on the projective space ℙn, n ≥ 3, over an algebraically closed field of characteristic zero. It is well known that E is arithmetically Buchsbaum if and only if n = 3 and E is a null-correlation bundle. In the present paper we establish an analogous result for rank two indecomposable arithmetically Buchsbaum vector bundles on the smooth quadric hypersurface Q n ⊂ ℙn+1, n ≥ 3. We give in fact a full classification and prove that n must...

Vector bundles on manifolds without divisors and a theorem on deformations

Georges Elencwajg, O. Forster (1982)

Annales de l'institut Fourier

Similarity:

We study holomorphic vector bundles on non-algebraic compact manifolds, especially on tori. We exhibit phenomena which cannot occur in the algebraic case, e.g. the existence of 2-bundles that cannot be obtained as extensions of a sheaf of ideals by a line bundle. We prove some general theorems in deformations theory of bundles, which is our main tool.

Decomposition in the large of two-forms of constant rank

Ibrahim Dibag (1974)

Annales de l'institut Fourier

Similarity:

The purpose of this paper is to find necessary and sufficient conditions for globally-decomposing an exterior 2-form w , of constant rank 2 s , on a vector-bundle E , as a sum : w = y 1 y s + 1 + + y s y 2 s . The general theory is applied to low dimensional manifolds, spheres, real and complex projective spaces.