Displaying similar documents to “A time periodic solution of the Navier-Stokes equations with mixed boundary conditions”

Dual-mixed finite element methods for the Navier-Stokes equations

Jason S. Howell, Noel J. Walkington (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.

Some Remarks on the Boundary Conditions in the Theory of Navier-Stokes Equations

Chérif Amrouche, Patrick Penel, Nour Seloula (2013)

Annales mathématiques Blaise Pascal

Similarity:

This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.

The Stokes system in the incompressible case-revisited

Rainer Picard (2008)

Banach Center Publications

Similarity:

The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.

On the Navier-Stokes equations with anisotropic wall slip conditions

Christiaan Le Roux (2023)

Applications of Mathematics

Similarity:

This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction...

On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation

M. Pulvirenti (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.