Displaying similar documents to “Population Dynamics of Grayling: Modelling Temperature and Discharge Effects”

The Basic Reproduction Number of an Infectious Disease in a Stable Population: The Impact of Population Growth Rate on the Eradication Threshold

H. Inaba, H. Nishiura (2008)

Mathematical Modelling of Natural Phenomena

Similarity:

Although age-related heterogeneity of infection has been addressed in various epidemic models assuming a demographically stationary population, only a few studies have explicitly dealt with age-specific patterns of transmission in growing or decreasing population. To discuss the threshold principle realistically, the present study investigates an age-duration-structured SIR epidemic model assuming a stable host population, as the first scheme to account for the non-stationality of the...

Limitation and Regulation of Ecological Populations: a Meta-analysis of Field Data

R. P. Blackshaw, S. V. Petrovskii (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

Whether the size of an animal population is environmentally limited or regulated by density dependent negative feedback mechanisms is of ecological interest. Proponents of limitation theory have issued a set of specific challenges which are addressed in this paper using field data for the insect . This species is known to be subject to population crashes caused by adverse environmental conditions and assumed to be limited. We re-examine published data in support of this hypothesis and...

Mathematical Modeling Describing the Effect of Fishing and Dispersion on Hermaphrodite Population Dynamics

S. Ben Miled, A. Kebir, M. L. Hbid (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In order to study the impact of fishing on a grouper population, we propose in this paper to model the dynamics of a grouper population in a fishing territory by using structured models. For that purpose, we have integrated the natural population growth, the fishing, the competition for shelter and the dispersion. The dispersion was considered as a consequence of the competition. First we prove, that the grouper stocks may be less sensitive...

Do Demographic and Disease Structures Affect the Recurrence of Epidemics ?

A. Castellazzo, A. Mauro, C. Volpe, E. Venturino (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper we present an epidemic model affecting an age-structured population. We show by numerical simulations that this demographic structure can induce persistent oscillations in the epidemic. The model is then extended to encompass a stage-structured disease within an age-dependent population. In this case as well, persistent oscillations are observed in the infected as well as in the whole population.

Mathematical Modeling and Quantitative Analysis of the Demographic and Ecological Aspects of Russian Supermortality

A. K. Cherkashin, Ya. A. Leshchenko (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

We have carried out a polysystem analysis of the population dynamics by using a variety of hypotheses and their respective models based on different system interpretations of the phenomenon under investigation. Each of the models supplements standard dynamic equations for explaining the effects observed. A qualitative model-based analysis is made of the age-specific male mortality for a Siberian industrial city. The study revealed the ...