Displaying similar documents to “An Epidemic Model With Post-Contact Prophylaxis of Distributed Length II. Stability and Oscillations if Treatment is Fully Effective”

Viral in-host infection model with two state-dependent delays: stability of continuous solutions

Kateryna Fedoryshyna, Alexander Rezounenko (2021)

Mathematica Bohemica

Similarity:

A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous...

On the dynamics of a vaccination model with multiple transmission ways

Shu Liao, Weiming Yang (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number. The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions. Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number...

Mathematical analysis of a within-host model of malaria with immune effectors and Holling type II functional response

F. Gazori, M. Hesaaraki (2015)

Applicationes Mathematicae

Similarity:

In this paper, we consider a within-host model of malaria with Holling type II functional response. The model describes the dynamics of the blood-stage of parasites and their interaction with host cells, in particular red blood cells and immune effectors. First, we obtain equilibrium points of the system. The global stability of the disease-free equilibrium point is established when the basic reproduction ratio of infection is R₀< 1. Then the disease is controllable and dies out....

Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency

J. Li, X. Zou (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper, with the assumptions that an infectious disease has a fixed latent period in a population and the latent individuals of the population may disperse, we reformulate an SIR model for the population living in two patches (cities, towns, or countries etc.), which is a generalization of the classic Kermack-McKendrick SIR model. The model is given by a system of delay differential equations with a fixed delay accounting for the latency and non-local terms caused by the mobility...