Viral in-host infection model with two state-dependent delays: stability of continuous solutions

Kateryna Fedoryshyna; Alexander Rezounenko

Mathematica Bohemica (2021)

  • Issue: 1, page 91-114
  • ISSN: 0862-7959

Abstract

top
A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration.

How to cite

top

Fedoryshyna, Kateryna, and Rezounenko, Alexander. "Viral in-host infection model with two state-dependent delays: stability of continuous solutions." Mathematica Bohemica (2021): 91-114. <http://eudml.org/doc/297064>.

@article{Fedoryshyna2021,
abstract = {A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration.},
author = {Fedoryshyna, Kateryna, Rezounenko, Alexander},
journal = {Mathematica Bohemica},
keywords = {evolution equation; state-dependent delay; Lyapunov stability; virus infection model},
language = {eng},
number = {1},
pages = {91-114},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Viral in-host infection model with two state-dependent delays: stability of continuous solutions},
url = {http://eudml.org/doc/297064},
year = {2021},
}

TY - JOUR
AU - Fedoryshyna, Kateryna
AU - Rezounenko, Alexander
TI - Viral in-host infection model with two state-dependent delays: stability of continuous solutions
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 91
EP - 114
AB - A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration.
LA - eng
KW - evolution equation; state-dependent delay; Lyapunov stability; virus infection model
UR - http://eudml.org/doc/297064
ER -

References

top
  1. Beddington, J. R., 10.2307/3866, J. Animal Ecology 44 (1975), 331-340. (1975) DOI10.2307/3866
  2. DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V., 10.2307/1936298, Ecology 56 (1975), 881-892. (1975) DOI10.2307/1936298
  3. Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O., 10.1007/978-1-4612-4206-2, Applied Mathematical Sciences 110. Springer, New York (1995). (1995) Zbl0826.34002MR1345150DOI10.1007/978-1-4612-4206-2
  4. Driver, R. D., 10.1016/0003-4916(63)90227-6, Ann. Phys. 21 (1963), 122-142. (1963) Zbl0108.40705MR0151110DOI10.1016/0003-4916(63)90227-6
  5. Global Hepatitis Report 2017, World Health Organization, Geneva (2017). Available at http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf. 
  6. Gourley, S. A., Kuang, Y., Nagy, J. D., 10.1080/17513750701769873, J. Biol. Dyn. 2 (2008), 140-153. (2008) Zbl1140.92014MR2428891DOI10.1080/17513750701769873
  7. Hale, J. K., 10.1007/978-1-4612-9892-2, Applied Mathematical Sciences 3. Springer, Berlin (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2
  8. Hartung, F., Krisztin, T., Walther, H.-O., Wu, J., 10.1016/S1874-5725(06)80009-X, Handbook of Differential Equations: Ordinary Differential Equations. Vol. 3 Elsevier, North Holland, Amsterdam (2006), 435-545 A. Cañada et al. (2006) MR2457636DOI10.1016/S1874-5725(06)80009-X
  9. Huang, G., Ma, W., Takeuchi, Y., 10.1016/j.aml.2009.06.004, Appl. Math. Lett. 22 (2009), 1690-1693. (2009) Zbl1178.37125MR2569065DOI10.1016/j.aml.2009.06.004
  10. Huang, G., Ma, W., Takeuchi, Y., 10.1016/j.aml.2011.02.007, Appl. Math. Lett. 24 (2011), 1199-1203. (2011) Zbl1217.34128MR2784182DOI10.1016/j.aml.2011.02.007
  11. Korobeinikov, A., 10.1007/s11538-007-9196-y, Bull. Math. Biol. 69 (2007), 1871-1886. (2007) Zbl1298.92101MR2329184DOI10.1007/s11538-007-9196-y
  12. Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Mathematics in Science and Engineering 191. Academic Press, Boston (1993). (1993) Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
  13. Lyapunov, A. M., The General Problem of the Stability of Motion, Charkov Mathematical Society, Charkov (1892), Russian 9999JFM99999 24.0876.02. (1892) MR1229075
  14. McCluskey, C. C., 10.1137/140971683, SIAM J. Appl. Dyn. Syst. 14 (2015), 1-24. (2015) Zbl1325.34081MR3296596DOI10.1137/140971683
  15. Nowak, M., Bangham, C., 10.1126/science.272.5258.74, Science 272 (1996), 74-79. (1996) DOI10.1126/science.272.5258.74
  16. Perelson, A. S., Nelson, P., 10.1137/S0036144598335107, SIAM Rev. 41 (1999), 3-44. (1999) Zbl1078.92502MR1669741DOI10.1137/S0036144598335107
  17. Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D., 10.1126/science.271.5255.1582, Science 271 (1996), 1582-1586. (1996) DOI10.1126/science.271.5255.1582
  18. Rezounenko, A. V., 10.1016/j.na.2008.08.006, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3978-3986. (2009) Zbl1163.35494MR2515314DOI10.1016/j.na.2008.08.006
  19. Rezounenko, A. V., 10.1016/j.na.2010.05.005, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1707-1714. (2010) Zbl1194.35488MR2661353DOI10.1016/j.na.2010.05.005
  20. Rezounenko, A. V., 10.1016/j.jmaa.2011.06.070, J. Math. Anal. Appl. 385 (2012), 506-516. (2012) Zbl1242.34136MR2834276.DOI10.1016/j.jmaa.2011.06.070
  21. Rezounenko, A. V., Local properties of solutions to non-autonomous parabolic PDEs with state-dependent delays, J. Abstr. Differ. Equ. Appl. 2 (2012), 56-71. (2012) Zbl1330.35493MR3010014
  22. Rezounenko, A. V., 10.14232/ejqtde.2016.1.79, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1-15. (2016) Zbl1389.93130MR3547455DOI10.14232/ejqtde.2016.1.79
  23. Rezounenko, A. V., 10.3934/dcdsb.2017074, Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 1547-1563. (2017) Zbl1359.93209MR3639177DOI10.3934/dcdsb.2017074
  24. Rezounenko, A. V., Viral infection model with diffusion and state-dependent delay: a case of logistic growth, Proc. Equadiff 2017 Conf., Bratislava, 2017 Slovak University of Technology, Spektrum STU Publishing (2017), 53-60 K. Mikula et al. (2017) MR3639177
  25. Smith, H. L., 10.1090/surv/041, Mathematical Surveys and Monographs 41. AMS, Providence (1995). (1995) Zbl0821.34003MR1319817DOI10.1090/surv/041
  26. Walther, H.-O., 10.1016/j.jde.2003.07.001, J. Diff. Equations 195 (2003), 46-65. (2003) Zbl1045.34048MR2019242DOI10.1016/j.jde.2003.07.001
  27. Wang, X., Liu, S., 10.1002/mma.2576, Math. Methods Appl. Sci. 36 (2013), 125-142. (2013) Zbl1317.34171MR3008329DOI10.1002/mma.2576
  28. Wang, J., Pang, J., Kuniya, T., Enatsu, Y., 10.1016/j.amc.2014.05.015, Appl. Math. Comput. 241 (2014), 298-316. (2014) Zbl1334.92431MR3223430.DOI10.1016/j.amc.2014.05.015
  29. Wodarz, D., 10.1099/vir.0.19118-0, J. General Virology 84 (2003), 1743-1750. (2003) DOI10.1099/vir.0.19118-0
  30. Wodarz, D., 10.1007/978-0-387-68733-9, Interdisciplinary Applied Mathematics 32. Springer, New York (2007). (2007) Zbl1125.92032MR2273003DOI10.1007/978-0-387-68733-9
  31. Xu, S., 10.14232/ejqtde.2012.1.9, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper No. 9, 10 pages. (2012) Zbl1340.34174MR2878794DOI10.14232/ejqtde.2012.1.9
  32. Yan, Y., Wang, W., 10.3934/dcdsb.2012.17.401, Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 401-416. (2012) Zbl1233.92061MR2843287DOI10.3934/dcdsb.2012.17.401
  33. Yousfi, N., Hattaf, K., Tridane, A., 10.1007/s00285-010-0397-x, J. Math. Biol. 63 (2011), 933-957. (2011) Zbl1234.92040MR2844670DOI10.1007/s00285-010-0397-x
  34. Zhao, Y., Xu, Z., Global dynamics for a delayed hepatitis C virus infection model, Electron. J. Differ. Equ. 2014 (2014), 1-18. (2014) Zbl1304.34141MR3239375
  35. Zhu, H., Zou, X., 10.3934/dcdsb.2009.12.511, Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 511-524. (2009) Zbl1169.92033MR2525152DOI10.3934/dcdsb.2009.12.511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.