Viral in-host infection model with two state-dependent delays: stability of continuous solutions
Kateryna Fedoryshyna; Alexander Rezounenko
Mathematica Bohemica (2021)
- Issue: 1, page 91-114
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFedoryshyna, Kateryna, and Rezounenko, Alexander. "Viral in-host infection model with two state-dependent delays: stability of continuous solutions." Mathematica Bohemica (2021): 91-114. <http://eudml.org/doc/297064>.
@article{Fedoryshyna2021,
abstract = {A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration.},
author = {Fedoryshyna, Kateryna, Rezounenko, Alexander},
journal = {Mathematica Bohemica},
keywords = {evolution equation; state-dependent delay; Lyapunov stability; virus infection model},
language = {eng},
number = {1},
pages = {91-114},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Viral in-host infection model with two state-dependent delays: stability of continuous solutions},
url = {http://eudml.org/doc/297064},
year = {2021},
}
TY - JOUR
AU - Fedoryshyna, Kateryna
AU - Rezounenko, Alexander
TI - Viral in-host infection model with two state-dependent delays: stability of continuous solutions
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 91
EP - 114
AB - A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration.
LA - eng
KW - evolution equation; state-dependent delay; Lyapunov stability; virus infection model
UR - http://eudml.org/doc/297064
ER -
References
top- Beddington, J. R., 10.2307/3866, J. Animal Ecology 44 (1975), 331-340. (1975) DOI10.2307/3866
- DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V., 10.2307/1936298, Ecology 56 (1975), 881-892. (1975) DOI10.2307/1936298
- Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O., 10.1007/978-1-4612-4206-2, Applied Mathematical Sciences 110. Springer, New York (1995). (1995) Zbl0826.34002MR1345150DOI10.1007/978-1-4612-4206-2
- Driver, R. D., 10.1016/0003-4916(63)90227-6, Ann. Phys. 21 (1963), 122-142. (1963) Zbl0108.40705MR0151110DOI10.1016/0003-4916(63)90227-6
- Global Hepatitis Report 2017, World Health Organization, Geneva (2017). Available at http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf.
- Gourley, S. A., Kuang, Y., Nagy, J. D., 10.1080/17513750701769873, J. Biol. Dyn. 2 (2008), 140-153. (2008) Zbl1140.92014MR2428891DOI10.1080/17513750701769873
- Hale, J. K., 10.1007/978-1-4612-9892-2, Applied Mathematical Sciences 3. Springer, Berlin (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2
- Hartung, F., Krisztin, T., Walther, H.-O., Wu, J., 10.1016/S1874-5725(06)80009-X, Handbook of Differential Equations: Ordinary Differential Equations. Vol. 3 Elsevier, North Holland, Amsterdam (2006), 435-545 A. Cañada et al. (2006) MR2457636DOI10.1016/S1874-5725(06)80009-X
- Huang, G., Ma, W., Takeuchi, Y., 10.1016/j.aml.2009.06.004, Appl. Math. Lett. 22 (2009), 1690-1693. (2009) Zbl1178.37125MR2569065DOI10.1016/j.aml.2009.06.004
- Huang, G., Ma, W., Takeuchi, Y., 10.1016/j.aml.2011.02.007, Appl. Math. Lett. 24 (2011), 1199-1203. (2011) Zbl1217.34128MR2784182DOI10.1016/j.aml.2011.02.007
- Korobeinikov, A., 10.1007/s11538-007-9196-y, Bull. Math. Biol. 69 (2007), 1871-1886. (2007) Zbl1298.92101MR2329184DOI10.1007/s11538-007-9196-y
- Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Mathematics in Science and Engineering 191. Academic Press, Boston (1993). (1993) Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
- Lyapunov, A. M., The General Problem of the Stability of Motion, Charkov Mathematical Society, Charkov (1892), Russian 9999JFM99999 24.0876.02. (1892) MR1229075
- McCluskey, C. C., 10.1137/140971683, SIAM J. Appl. Dyn. Syst. 14 (2015), 1-24. (2015) Zbl1325.34081MR3296596DOI10.1137/140971683
- Nowak, M., Bangham, C., 10.1126/science.272.5258.74, Science 272 (1996), 74-79. (1996) DOI10.1126/science.272.5258.74
- Perelson, A. S., Nelson, P., 10.1137/S0036144598335107, SIAM Rev. 41 (1999), 3-44. (1999) Zbl1078.92502MR1669741DOI10.1137/S0036144598335107
- Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D., 10.1126/science.271.5255.1582, Science 271 (1996), 1582-1586. (1996) DOI10.1126/science.271.5255.1582
- Rezounenko, A. V., 10.1016/j.na.2008.08.006, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3978-3986. (2009) Zbl1163.35494MR2515314DOI10.1016/j.na.2008.08.006
- Rezounenko, A. V., 10.1016/j.na.2010.05.005, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1707-1714. (2010) Zbl1194.35488MR2661353DOI10.1016/j.na.2010.05.005
- Rezounenko, A. V., 10.1016/j.jmaa.2011.06.070, J. Math. Anal. Appl. 385 (2012), 506-516. (2012) Zbl1242.34136MR2834276.DOI10.1016/j.jmaa.2011.06.070
- Rezounenko, A. V., Local properties of solutions to non-autonomous parabolic PDEs with state-dependent delays, J. Abstr. Differ. Equ. Appl. 2 (2012), 56-71. (2012) Zbl1330.35493MR3010014
- Rezounenko, A. V., 10.14232/ejqtde.2016.1.79, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1-15. (2016) Zbl1389.93130MR3547455DOI10.14232/ejqtde.2016.1.79
- Rezounenko, A. V., 10.3934/dcdsb.2017074, Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 1547-1563. (2017) Zbl1359.93209MR3639177DOI10.3934/dcdsb.2017074
- Rezounenko, A. V., Viral infection model with diffusion and state-dependent delay: a case of logistic growth, Proc. Equadiff 2017 Conf., Bratislava, 2017 Slovak University of Technology, Spektrum STU Publishing (2017), 53-60 K. Mikula et al. (2017) MR3639177
- Smith, H. L., 10.1090/surv/041, Mathematical Surveys and Monographs 41. AMS, Providence (1995). (1995) Zbl0821.34003MR1319817DOI10.1090/surv/041
- Walther, H.-O., 10.1016/j.jde.2003.07.001, J. Diff. Equations 195 (2003), 46-65. (2003) Zbl1045.34048MR2019242DOI10.1016/j.jde.2003.07.001
- Wang, X., Liu, S., 10.1002/mma.2576, Math. Methods Appl. Sci. 36 (2013), 125-142. (2013) Zbl1317.34171MR3008329DOI10.1002/mma.2576
- Wang, J., Pang, J., Kuniya, T., Enatsu, Y., 10.1016/j.amc.2014.05.015, Appl. Math. Comput. 241 (2014), 298-316. (2014) Zbl1334.92431MR3223430.DOI10.1016/j.amc.2014.05.015
- Wodarz, D., 10.1099/vir.0.19118-0, J. General Virology 84 (2003), 1743-1750. (2003) DOI10.1099/vir.0.19118-0
- Wodarz, D., 10.1007/978-0-387-68733-9, Interdisciplinary Applied Mathematics 32. Springer, New York (2007). (2007) Zbl1125.92032MR2273003DOI10.1007/978-0-387-68733-9
- Xu, S., 10.14232/ejqtde.2012.1.9, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper No. 9, 10 pages. (2012) Zbl1340.34174MR2878794DOI10.14232/ejqtde.2012.1.9
- Yan, Y., Wang, W., 10.3934/dcdsb.2012.17.401, Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 401-416. (2012) Zbl1233.92061MR2843287DOI10.3934/dcdsb.2012.17.401
- Yousfi, N., Hattaf, K., Tridane, A., 10.1007/s00285-010-0397-x, J. Math. Biol. 63 (2011), 933-957. (2011) Zbl1234.92040MR2844670DOI10.1007/s00285-010-0397-x
- Zhao, Y., Xu, Z., Global dynamics for a delayed hepatitis C virus infection model, Electron. J. Differ. Equ. 2014 (2014), 1-18. (2014) Zbl1304.34141MR3239375
- Zhu, H., Zou, X., 10.3934/dcdsb.2009.12.511, Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 511-524. (2009) Zbl1169.92033MR2525152DOI10.3934/dcdsb.2009.12.511
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.