Displaying similar documents to “Metastability and the Ising model.”

Existence and uniqueness for the three-dimensional thermoelasticity system in shape memory problems

Irena Pawłow, Antoni Żochowski (2003)

Banach Center Publications

Similarity:

A thermodynamically consistent model of shape memory alloys in three dimensions is studied. The thermoelasticity system, based on the strain tensor, its gradient and the absolute temperature, generalizes the well-known one-dimensional Falk model. Under simplifying structural assumptions we prove global in time existence and uniqueness of the solution.

Well-posedness of a thermo-mechanical model for shape memory alloys under tension

Pavel Krejčí, Ulisse Stefanelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.

Existence and uniqueness of solutions for a three-dimensional thermoelastic system

Irena Pawłow, Antoni Żochowski

Similarity:

A thermodynamically consistent model of shape memory alloys in three dimensions is studied. The thermoelastic system, based on the strain tensor, its gradient and the absolute temperature, is a generalization of the well-known one-dimensional Falk model. The key assumptions concerning the form of constitutive relations are discussed. The detailed and selfcontained proof of the global-in-time existence and uniqueness of solutions is presented.

Shape Correspondence Analysis for Biomolecules Based on Volumetric Eigenfunctions

Tao Liao, Hao-Chih Lee, Ge Yang, Yongjie Jessica Zhang (2015)

Molecular Based Mathematical Biology

Similarity:

The functionality of biomolecules depends on their flexible structures, which can be characterized by their surface shapes. Tracking the deformation and comparing biomolecular shapes are essential in understanding their mechanisms. In this paper, a new spectral shape correspondence analysis method is introduced for biomolecules based on volumetric eigenfunctions. The eigenfunctions are computed from the joint graph of two given shapes, avoiding the sign flipping and confusion in the...

Asymptotic Analysis of the Shape and Composition of Alloy Islands in Epitaxial Solid Films

M. Blanariu, B. J. Spencer (2008)

Mathematical Modelling of Natural Phenomena

Similarity:

We consider the formation of solid drops (“islands”) occurring in the growth of strained solid films. Beginning from a detailed model for the growth of an alloy film that incorporates the coupling between composition, elastic stress and the morphology of the free boundary, we develop an asymptotic description of the shape and compositional nonuniformity of small alloy islands grown at small deposition rates. A key feature of the analysis is a “thin domain” scaling in the island which...

Function spaces and shape theories

Jerzy Dydak, Sławomir Nowak (2002)

Fundamenta Mathematicae

Similarity:

The purpose of this paper is to provide a geometric explanation of strong shape theory and to give a fairly simple way of introducing the strong shape category formally. Generally speaking, it is useful to introduce a shape theory as a localization at some class of “equivalences”. We follow this principle and we extend the standard shape category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences. Similarly, we extend the strong shape category of Edwards-Hastings...

Multi-phase structural optimization via a level set method

G. Allaire, C. Dapogny, G. Delgado, G. Michailidis (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves...