Bipartite coverings and the chromatic number.
Mubayi, Dhruv, Vishwanathan, Sundar (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Mubayi, Dhruv, Vishwanathan, Sundar (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Brandt, Stephan, Brinkmann, Gunnar, Harmuth, Thomas (1998)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
DeLaVina, Ermelinda, Fajtlowicz, Siemion (1996)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Hujter, M., Tuza, Zs. (1993)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Allen, Peter, Lozin, Vadim, Rao, Michaël (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Simic, Slobodan K. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Barát, János, Matoušek, Jirí, Wood, David R. (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Carmi, Paz, Dujmovic, Vida, Morin, Pat, Wood, David R. (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Bagga, Jay (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Jaroslav Ivanco (2007)
Discussiones Mathematicae Graph Theory
Similarity:
A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we prove that any balanced bipartite graph with minimum degree greater than |V(G)|/4 ≥ 2 is magic. A similar result is presented for supermagic regular bipartite graphs.
Faudree, Jill R., Faudree, Ralph J., Schmitt, John R. (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Gary Chartrand, Farrokh Saba, Hung Bin Zou (1985)
Časopis pro pěstování matematiky
Similarity: