Displaying similar documents to “The first boundary problem for a degenerate elliptic system.”

An overdetermined elliptic problem in a domain with countably rectifiable boundary

Przemysław Górka (2007)

Colloquium Mathematicae

Similarity:

We examine an elliptic equation in a domain Ω whose boundary ∂Ω is countably (m-1)-rectifiable. We also assume that ∂Ω satisfies a geometrical condition. We are interested in an overdetermined boundary value problem (examined by Serrin [Arch. Ration. Mech. Anal. 43 (1971)] for classical solutions on domains with smooth boundary). We show that existence of a solution of this problem implies that Ω is an m-dimensional Euclidean ball.

Deficient Coerciveness Estimate for an Abstract Differential Equation with a Parameter Dependent Boundary Conditions

Aissa Aibeche, Angelo Favini, Chahrazed Mezoued (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we consider an abstract elliptic differential problem where the equation and the boundary conditions may contain a spectral parameter. We first prove that this problem generates an isomorphism between appropriate spaces and we establish a more precise estimate called coerciveness estimate with defect. The results obtained are applied to study some classes of elliptic, and also possibly degenerate, problems.

On some elliptic boundary-value problems with discontinuous nonlinearities

Giovanni Anello (2005)

Annales Polonici Mathematici

Similarity:

We establish two existence results for elliptic boundary-value problems with discontinuous nonlinearities. One of them concerns implicit elliptic equations of the form ψ(-Δu) = f(x,u). We emphasize that our assumptions permit the nonlinear term f to be discontinuous with respect to the second variable at each point.

Positive solutions with given slope of a nonlocal second order boundary value problem with sign changing nonlinearities

P. Ch. Tsamatos (2004)

Annales Polonici Mathematici

Similarity:

We study a nonlocal boundary value problem for the equation x''(t) + f(t,x(t),x'(t)) = 0, t ∈ [0,1]. By applying fixed point theorems on appropriate cones, we prove that this boundary value problem admits positive solutions with slope in a given annulus. It is remarkable that we do not assume f≥0. Here the sign of the function f may change.

Solvability of the heat equation in weighted Sobolev spaces

Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

Similarity:

The existence of solutions to an initial-boundary value problem to the heat equation in a bounded domain in ℝ³ is proved. The domain contains an axis and the existence is proved in weighted anisotropic Sobolev spaces with weight equal to a negative power of the distance to the axis. Therefore we prove the existence of solutions which vanish sufficiently fast when approaching the axis. We restrict our considerations to the Dirichlet problem, but the Neumann and the third boundary value...