The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On some weighted inequalities of the qualitative theory of elliptic equations.”

Norm inequalities in weighted amalgam

Suket Kumar (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Hardy inequalities for the Hardy-type operators are characterized in the amalgam space which involves Banach function space and sequence space.

Commutators of weighted Hardy operators on Herz-type spaces

Canqin Tang, Feien Xue, Yu Zhou (2011)

Annales Polonici Mathematici

Similarity:

A sufficient condition for boundedness on Herz-type spaces of the commutator generated by a Lipschitz function and a weighted Hardy operator is obtained.

First and second order Opial inequalities

Steven Bloom (1997)

Studia Mathematica

Similarity:

Let T γ f ( x ) = ʃ 0 x k ( x , y ) γ f ( y ) d y , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form ʃ 0 ( i = 1 n | T γ i f ( x ) | q i | ) | f ( x ) | q 0 w ( x ) d x C ( ʃ 0 | f ( x ) | p v ( x ) d x ) ( q 0 + + q n ) / p . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent q 0 = 0 . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold. ...