Note on the gluing theorem for groupoids and Van Kampen's theorem
Klaus Heiner Kamps (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Klaus Heiner Kamps (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Kamps, K.H., Porter, T. (1999)
Homology, Homotopy and Applications
Similarity:
Ronald Brown, Christopher B. Spencer (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Brown, Ronald, Hardie, Keith A., Kamps, Klaus Heiner, Porter, Timothy (2002)
Theory and Applications of Categories [electronic only]
Similarity:
L. Sin-Min, S. Aye (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Ronald Brown (2007)
Banach Center Publications
Similarity:
This paper illustrates the themes of the title in terms of: van Kampen type theorems for the fundamental groupoid; holonomy and monodromy groupoids; and higher homotopy groupoids. Interaction with work of the writer is explored.
Ivan, Gh. (1999)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Ronald Brown, Philip J. Higgins (1981)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Baez, John C., Hoffnung, Alexander E., Walker, Christopher D. (2010)
Theory and Applications of Categories [electronic only]
Similarity:
W. Waliszewski
Similarity:
CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid............................................................................................................................
Brown, Ronald, Kamps, K. H., Porter, Timothy (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Celakoska-Jordanova, Vesna (2010)
Mathematica Balkanica New Series
Similarity:
AMS Subj. Classification: 03C05, 08B20 Free algebras are very important in studying classes of algebras, especially varieties of algebras. Any algebra that belongs to a given variety of algebras can be characterized as a homomorphic image of a free algebra of that variety. Describing free algebras is an important task that can be quite complicated, since there is no general method to resolve this problem. The aim of this work is to investigate classes of groupoids, i.e. algebras...