The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Legendrian foliations on almost 𝒮 -manifolds.”

A note on generalized flag structures

Tomasz Rybicki (1998)

Annales Polonici Mathematici

Similarity:

Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.

On G-foliations

Robert Wolak (1985)

Annales Polonici Mathematici

Similarity:

On almost cosymplectic (κ,μ,ν)-spaces

Piotr Dacko, Zbigniew Olszak (2005)

Banach Center Publications

Similarity:

An almost cosymplectic (κ,μ,ν)-space is by definition an almost cosymplectic manifold whose structure tensor fields φ, ξ, η, g satisfy a certain special curvature condition (see formula (eq1b)). This condition is invariant with respect to the so-called -homothetic transformations of almost cosymplectic structures. For such manifolds, the tensor fields φ, h ( = ( 1 / 2 ) ξ φ ), A ( = -∇ξ) fulfill a certain system of differential equations. It is proved that the leaves of the canonical foliation of an...