Displaying similar documents to “Finite element approximation of Maxwell's equations with Debye memory.”

Numerical solution of the Maxwell equations in time-varying media using Magnus expansion

István Faragó, Ágnes Havasi, Robert Horváth (2012)

Open Mathematics

Similarity:

For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.

Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes

Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel, Serge Piperno (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy...

Numerical analysis and simulations of quasistatic frictionless contact problems

José Fernández García, Weimin Han, Meir Shillor, Mircea Sofonea (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

A summary of recent results concerning the modelling as well as the variational and numerical analysis of frictionless contact problems for viscoplastic materials are presented. The contact is modelled with the Signorini or normal compliance conditions. Error estimates for the fully discrete numerical scheme are described, and numerical simulations based on these schemes are reported.

Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model

Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We analyze two numerical schemes of Euler type in time and finite-element type with 1 -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent....

A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations

Abigail Wacher (2013)

Open Mathematics

Similarity:

We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium...