The -Wright function in time-fractional diffusion processes: a tutorial survey.
Mainardi, Francesco, Mura, Antonio, Pagnini, Gianni (2010)
International Journal of Differential Equations
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Mainardi, Francesco, Mura, Antonio, Pagnini, Gianni (2010)
International Journal of Differential Equations
Similarity:
Huang, F. (2009)
Journal of Applied Mathematics
Similarity:
Hahn, Marjorie, Umarov, Sabir (2011)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo There is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving...
Debnath, Lokenath (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Abdennadher, Ali, Neel, Marie-Christine (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Vázquez, Luis (2011)
Advances in Difference Equations [electronic only]
Similarity:
Samuel, M., Thomas, Anitha (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Boyadjiev, Lyubomir, Kamenov, Ognian, Kalla, Shyam (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Li-Li Liu, Jun-Sheng Duan (2015)
Open Mathematics
Similarity:
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...
Li, Ming, Lim, S.C., Chen, Shengyong (2011)
Mathematical Problems in Engineering
Similarity:
Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)
Applications of Mathematics
Similarity:
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...
Luchko, Yury (2011)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary In the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative,...
Luchko, Yury, Mainardi, Francesco, Rogosin, Sergei (2011)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary This paper presents a brief overview of the life story and professional career of Prof. R. Gorenflo - a well-known mathematician, an expert in the field of Differential and Integral Equations, Numerical Mathematics, Fractional Calculus and Applied Analysis, an interesting conversational partner, an experienced colleague, and a real friend. Especially his role in the modern Fractional...