A class of Fourier series
Javad Namazi (1993)
Colloquium Mathematicae
Similarity:
Javad Namazi (1993)
Colloquium Mathematicae
Similarity:
Stanković, B. (2001)
Bulletin. Classe des Sciences Mathématiques et Naturelles. Sciences Mathématiques
Similarity:
Schipp, Ferenc (2004)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Khazaradze, M. (1996)
Georgian Mathematical Journal
Similarity:
Goginava, U. (2002)
Georgian Mathematical Journal
Similarity:
Etienne Matheron (1996)
Colloquium Mathematicae
Similarity:
Jelassi, M., Rachdi, L. (2004)
Fractional Calculus and Applied Analysis
Similarity:
We characterize the range of some spaces of functions by the Fourier transform associated with the spherical mean operator R and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schawrtz theorems.
Cartier, Pierre (2000)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Gát, György (2001)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Runovski, K., Schmeisser, H.-J. (2001)
Georgian Mathematical Journal
Similarity:
Kamoun, Lotfi (2005)
Fractional Calculus and Applied Analysis
Similarity:
2000 Mathematics Subject Classification: 42B10, 43A32. In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.