On the complexity of H sets of the unit circle
Colloquium Mathematicae (1996)
- Volume: 70, Issue: 1, page 1-5
- ISSN: 0010-1354
Access Full Article
topHow to cite
topMatheron, Etienne. "On the complexity of H sets of the unit circle." Colloquium Mathematicae 70.1 (1996): 1-5. <http://eudml.org/doc/210393>.
@article{Matheron1996,
author = {Matheron, Etienne},
journal = {Colloquium Mathematicae},
keywords = {-set; -set; Banach algebra; complex valued functions; Fourier series; distributions; pseudofunctions; Polish space},
language = {eng},
number = {1},
pages = {1-5},
title = {On the complexity of H sets of the unit circle},
url = {http://eudml.org/doc/210393},
volume = {70},
year = {1996},
}
TY - JOUR
AU - Matheron, Etienne
TI - On the complexity of H sets of the unit circle
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 1
EP - 5
LA - eng
KW - -set; -set; Banach algebra; complex valued functions; Fourier series; distributions; pseudofunctions; Polish space
UR - http://eudml.org/doc/210393
ER -
References
top- [1] N. Bary, A Treatise on Trigonometric Series, MacMillan, New York, 1964. Zbl0129.28002
- [2] N. Bary, Sur l'unicité du développement trigonométrique, Fund. Math. 9 (1927), 62-115. Zbl53.0261.01
- [3] G. Debs et J. Saint Raymond, Ensembles d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (3) (1987), 217-239. Zbl0618.42004
- [4] J. P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. Zbl0112.29304
- [5] R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187. Zbl0156.37403
- [6] R. Kaufman, Absolutely convergent Fourier series and some classes of sets, Bull. Sci. Math. 109 (1985), 363-372. Zbl0608.42007
- [7] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987.
- [8] T. Linton, The H-sets in the unit circle are properly , Real Anal. Exchange, to appear.
- [9] N. Lusin, Les ensembles analytiques, Chelsea, New York, 1972.
- [10] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458. Zbl0677.42006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.