Displaying similar documents to “Nonholonomic tangent spaces: intrinsic construction and rigid dimensions.”

Nilpotent approximation of a trident snake robot controlling distribution

Jaroslav Hrdina, Radomil Matoušek, Aleš Návrat, Petr Vašík (2017)

Kybernetika

Similarity:

We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.

Nilpotent complex structures.

Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)

RACSAM

Similarity:

Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.

Nil series from arbitrary functions in group theory

Ian Hawthorn (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.

Group rings with FC-nilpotent unit groups.

Vikas Bist (1991)

Publicacions Matemàtiques

Similarity:

Let U(RG) be the unit group of the group ring RG. Groups G such that U(RG) is FC-nilpotent are determined, where R is the ring of integers Z or a field K of characteristic zero.

On Kolchin's theorem.

Israel N. Herstein (1986)

Revista Matemática Iberoamericana

Similarity:

A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent. Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite...