Displaying similar documents to “Some applications of fractional calculus in engineering.”

Robust fractional adaptive control based on the strictly Positive Realness Condition

Samir Ladaci, Abdelfatah Charef, Jean Jacques Loiseau (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The proposed...

Fopid Controller Design for Robust Performance Using Particle Swarm Optimization

Zamani, Majid, Karimi-Ghartemani, Masoud, Sadati, Nasser (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05 This paper proposes a novel method to design an H∞ -optimal fractional order PID (FOPID) controller with ability to control the transient, steady-state response and stability margins characteristics. The method uses particle swarm optimization algorithm and operates based on minimizing a general cost function. Minimization of the cost function is carried out subject to the H∞...

Distributed optimization via active disturbance rejection control: A nabla fractional design

Yikun Zeng, Yiheng Wei, Shuaiyu Zhou, Dongdong Yue (2024)

Kybernetika

Similarity:

This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal...

Design of unknown input fractional-order observers for fractional-order systems

Ibrahima N'Doye, Mohamed Darouach, Holger Voos, Michel Zasadzinski (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach,...