Distributed optimization via active disturbance rejection control: A nabla fractional design

Yikun Zeng; Yiheng Wei; Shuaiyu Zhou; Dongdong Yue

Kybernetika (2024)

  • Issue: 1, page 90-109
  • ISSN: 0023-5954

Abstract

top
This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.

How to cite

top

Zeng, Yikun, et al. "Distributed optimization via active disturbance rejection control: A nabla fractional design." Kybernetika (2024): 90-109. <http://eudml.org/doc/299548>.

@article{Zeng2024,
abstract = {This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.},
author = {Zeng, Yikun, Wei, Yiheng, Zhou, Shuaiyu, Yue, Dongdong},
journal = {Kybernetika},
keywords = {distributed optimization; nabla fractional difference; active disturbance rejection control; Lyapunov method},
language = {eng},
number = {1},
pages = {90-109},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed optimization via active disturbance rejection control: A nabla fractional design},
url = {http://eudml.org/doc/299548},
year = {2024},
}

TY - JOUR
AU - Zeng, Yikun
AU - Wei, Yiheng
AU - Zhou, Shuaiyu
AU - Yue, Dongdong
TI - Distributed optimization via active disturbance rejection control: A nabla fractional design
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 90
EP - 109
AB - This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.
LA - eng
KW - distributed optimization; nabla fractional difference; active disturbance rejection control; Lyapunov method
UR - http://eudml.org/doc/299548
ER -

References

top
  1. Chen, Y. Q., Gao, Q., Wei, Y. H., Wang, Y., , Appl. Math. Comput. 314 (2017), 310-321. MR3683875DOI
  2. Chen, Z. Q., Liang, S., , Kybernetika 58 (2022), 1, 123-144. MR4405950DOI
  3. Cheng, S. S., Liang, S., , Kybernetika 56 (2020), 3, 559-577. MR4131743DOI
  4. Cheng, S. S., Liang, S., Fan, nd Y., , Control Theory and Technology 19 (2021), 2, 249-259. MR4264963DOI
  5. Ding, C., Wei, R., Liu, F., , J. Franklin Inst. 359 (2021), 17, 10,267-10,280. MR4507594DOI
  6. Duan, S. Q., Chen, S., Zhao, Z. L., Active disturbance rejection distributed optimization algorithm for first order multi-agent disturbance systems., Control and Decision 37 (2022), 3, 1559-1566. 
  7. Gharesifard, B., Cortés, J., , IEEE Trans. Automat. Control 59 (2014), 3, 781-786. MR3188487DOI
  8. Goodrich, C., Peterson, A. C., Discrete Fractional Calculus., Springer, Cham 2015. MR3445243
  9. Guo, G., Zhang, R. Y. K., Zhou, I. D., , Automatica 157 (2023), 111,247. MR4631357DOI
  10. Han, J. Q., , IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906. DOI
  11. Hong, X. L., Wei, Y. H., Zhou, S. Y., Yue, D. D., , J. Franklin Inst. 361 (2024), 3, 1436-1454. MR4689320DOI
  12. Hong, X. L., Wei, Y. H., S., Zhou, Y., Yue, D. D., Cao, J. D., , IEEE Control Systems Lett. 8 (2024), 241-246. DOI
  13. Kia, S. S., Cortés, J., J., Martínez, S., , Automatica 55 (2015), 254-264. MR3336675DOI
  14. Liu, C. Y., Dou, X. H., Fan, Y., Cheng, S. S., , Kybernetika 59 (2023), 3, 392-417. MR4613716DOI
  15. Pu, Y. F., Zhou, J. L., Zhang, Y., Zhang, N., Huang, G., Siarry, P., , IEEE Trans. Neural Networks Learning Systems 26 (2015), 4, 653-662. MR3452478DOI
  16. Song, C. X., Qin, S. T., Zeng, Z. G., , IEEE Trans. Neural Networks Learning Systems (2023). DOI
  17. Wang, J., Elia, N., Control approach to distributed optimization., In: The 48th Annual Allerton Conference on Communication, Control, and Computing, Monticello 2010, pp. 557-561. 
  18. Wang, K., Gong, P., Ma, Z. Y., , Fractal and Fractional 7 (2023), 11, 813. MR4698993DOI
  19. Wang, Y., Song, Y., , Automatica 87 (2018), 113-120. MR3733906DOI
  20. Wang, Y. J., Song, Y. D., J., D., Hill, Krstic, M., , IEEE Trans. Cybernet. 49 (2019), 4, 1138-1147. DOI
  21. Wei, Y. H., , IEEE Trans. Circuits Systems II: Express Briefs 68 (2021), 10, 3246-3250. DOI
  22. Wei, Y. H., Nabla Fractional Order Systems Theory: Analysis and Control., Science Press, Beijing 2023. 
  23. Wei, Y. H., Chen, Y. Q., Liu, T. Y., Wang, Y., , ISA Trans. 88 (2019), 82-90. DOI
  24. Wei, Y. H., Chen, Y. Q., Zhao, X., Cao, J. D., , IEEE Trans. Systems Man Cybernet.: Systems 53 (2023), 3, 1895-1906. MR0660680DOI
  25. Wei, Y. H., Kang, Y., Yin, W. D., Wang, Y., , J. Franklin Inst. 357 (2020), 4, 2514-2532. MR4077858DOI
  26. Xu, Y., Han, T., Cai, K., Lin, Z., G, Yan, Fu, M., , IEEE Trans. Signal Process.65 (2017), 10, 2600-2612. MR3646746DOI
  27. Yang, X. J., Zhao, W. M., Yuan, J. X., Chen, T., Zhang, C., Wang, L. Q., , Fractal and Fractional 6 (2022), 11, 642. DOI
  28. Yang, X. L., Yuan, J. X., Chen, T., Yang, H., , Fractal and Fractional 7 (2023), 10, 749. DOI
  29. Zhu, Y. N., Research on Solving Network Distributed Optimization Problem Using Continuous-time Algorithms., Ph D. Thesis, Southeast University, Nanjing 2019. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.