Distributed optimization via active disturbance rejection control: A nabla fractional design
Yikun Zeng; Yiheng Wei; Shuaiyu Zhou; Dongdong Yue
Kybernetika (2024)
- Issue: 1, page 90-109
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZeng, Yikun, et al. "Distributed optimization via active disturbance rejection control: A nabla fractional design." Kybernetika (2024): 90-109. <http://eudml.org/doc/299548>.
@article{Zeng2024,
abstract = {This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.},
author = {Zeng, Yikun, Wei, Yiheng, Zhou, Shuaiyu, Yue, Dongdong},
journal = {Kybernetika},
keywords = {distributed optimization; nabla fractional difference; active disturbance rejection control; Lyapunov method},
language = {eng},
number = {1},
pages = {90-109},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed optimization via active disturbance rejection control: A nabla fractional design},
url = {http://eudml.org/doc/299548},
year = {2024},
}
TY - JOUR
AU - Zeng, Yikun
AU - Wei, Yiheng
AU - Zhou, Shuaiyu
AU - Yue, Dongdong
TI - Distributed optimization via active disturbance rejection control: A nabla fractional design
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 90
EP - 109
AB - This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.
LA - eng
KW - distributed optimization; nabla fractional difference; active disturbance rejection control; Lyapunov method
UR - http://eudml.org/doc/299548
ER -
References
top- Chen, Y. Q., Gao, Q., Wei, Y. H., Wang, Y., , Appl. Math. Comput. 314 (2017), 310-321. MR3683875DOI
- Chen, Z. Q., Liang, S., , Kybernetika 58 (2022), 1, 123-144. MR4405950DOI
- Cheng, S. S., Liang, S., , Kybernetika 56 (2020), 3, 559-577. MR4131743DOI
- Cheng, S. S., Liang, S., Fan, nd Y., , Control Theory and Technology 19 (2021), 2, 249-259. MR4264963DOI
- Ding, C., Wei, R., Liu, F., , J. Franklin Inst. 359 (2021), 17, 10,267-10,280. MR4507594DOI
- Duan, S. Q., Chen, S., Zhao, Z. L., Active disturbance rejection distributed optimization algorithm for first order multi-agent disturbance systems., Control and Decision 37 (2022), 3, 1559-1566.
- Gharesifard, B., Cortés, J., , IEEE Trans. Automat. Control 59 (2014), 3, 781-786. MR3188487DOI
- Goodrich, C., Peterson, A. C., Discrete Fractional Calculus., Springer, Cham 2015. MR3445243
- Guo, G., Zhang, R. Y. K., Zhou, I. D., , Automatica 157 (2023), 111,247. MR4631357DOI
- Han, J. Q., , IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906. DOI
- Hong, X. L., Wei, Y. H., Zhou, S. Y., Yue, D. D., , J. Franklin Inst. 361 (2024), 3, 1436-1454. MR4689320DOI
- Hong, X. L., Wei, Y. H., S., Zhou, Y., Yue, D. D., Cao, J. D., , IEEE Control Systems Lett. 8 (2024), 241-246. DOI
- Kia, S. S., Cortés, J., J., Martínez, S., , Automatica 55 (2015), 254-264. MR3336675DOI
- Liu, C. Y., Dou, X. H., Fan, Y., Cheng, S. S., , Kybernetika 59 (2023), 3, 392-417. MR4613716DOI
- Pu, Y. F., Zhou, J. L., Zhang, Y., Zhang, N., Huang, G., Siarry, P., , IEEE Trans. Neural Networks Learning Systems 26 (2015), 4, 653-662. MR3452478DOI
- Song, C. X., Qin, S. T., Zeng, Z. G., , IEEE Trans. Neural Networks Learning Systems (2023). DOI
- Wang, J., Elia, N., Control approach to distributed optimization., In: The 48th Annual Allerton Conference on Communication, Control, and Computing, Monticello 2010, pp. 557-561.
- Wang, K., Gong, P., Ma, Z. Y., , Fractal and Fractional 7 (2023), 11, 813. MR4698993DOI
- Wang, Y., Song, Y., , Automatica 87 (2018), 113-120. MR3733906DOI
- Wang, Y. J., Song, Y. D., J., D., Hill, Krstic, M., , IEEE Trans. Cybernet. 49 (2019), 4, 1138-1147. DOI
- Wei, Y. H., , IEEE Trans. Circuits Systems II: Express Briefs 68 (2021), 10, 3246-3250. DOI
- Wei, Y. H., Nabla Fractional Order Systems Theory: Analysis and Control., Science Press, Beijing 2023.
- Wei, Y. H., Chen, Y. Q., Liu, T. Y., Wang, Y., , ISA Trans. 88 (2019), 82-90. DOI
- Wei, Y. H., Chen, Y. Q., Zhao, X., Cao, J. D., , IEEE Trans. Systems Man Cybernet.: Systems 53 (2023), 3, 1895-1906. MR0660680DOI
- Wei, Y. H., Kang, Y., Yin, W. D., Wang, Y., , J. Franklin Inst. 357 (2020), 4, 2514-2532. MR4077858DOI
- Xu, Y., Han, T., Cai, K., Lin, Z., G, Yan, Fu, M., , IEEE Trans. Signal Process.65 (2017), 10, 2600-2612. MR3646746DOI
- Yang, X. J., Zhao, W. M., Yuan, J. X., Chen, T., Zhang, C., Wang, L. Q., , Fractal and Fractional 6 (2022), 11, 642. DOI
- Yang, X. L., Yuan, J. X., Chen, T., Yang, H., , Fractal and Fractional 7 (2023), 10, 749. DOI
- Zhu, Y. N., Research on Solving Network Distributed Optimization Problem Using Continuous-time Algorithms., Ph D. Thesis, Southeast University, Nanjing 2019.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.