Displaying similar documents to “A generalization of the Schwarzian via Clifford numbers.”

Clifford semifields

Mridul K. Sen, Sunil K. Maity, Kar-Ping Shum (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.

Clifford-Hermite-monogenic operators

Freddy Brackx, Nele de Schepper, Frank Sommen (2006)

Czechoslovak Mathematical Journal

Similarity:

In this paper we consider operators acting on a subspace of the space L 2 ( m ; m ) of square integrable functions and, in particular, Clifford differential operators with polynomial coefficients. The subspace is defined as the orthogonal sum of spaces s , k of specific Clifford basis functions of L 2 ( m ; m ) . Every Clifford endomorphism of can be decomposed into the so-called Clifford-Hermite-monogenic operators. These Clifford-Hermite-monogenic operators are characterized in terms of commutation relations...

On representations of real analytic functions by monogenic functions

Hongfen Yuan (2019)

Czechoslovak Mathematical Journal

Similarity:

Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.