The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the construction of a C 2 -counterexample to the Hamiltonian Seifert conjecture in 4 .”

On variants of Arnold conjecture

Roman Golovko (2020)

Archivum Mathematicum

Similarity:

In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms. ...

Chvátal-Erdös type theorems

Jill R. Faudree, Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson, Colton Magnant (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G), then G is hamiltonian-connected. We generalize these results by replacing the connectivity and independence number conditions with a weaker minimum degree and independence number condition in the presence of sufficient connectivity. More specifically, it is noted that if G is a graph of order n and k ≥ 2 is a positive integer such that κ(G) ≥ k, δ(G) >...

Improved Sufficient Conditions for Hamiltonian Properties

Jens-P. Bode, Anika Fricke, Arnfried Kemnitz (2015)

Discussiones Mathematicae Graph Theory

Similarity:

In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity...

On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes

Jianxiang Cao, Minyong Shi, Lihua Feng (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The balanced hypercube BHn, defined by Wu and Huang, is a variant of the hypercube network Qn, and has been proved to have better properties than Qn with the same number of links and processors. For a bipartite graph G = (V0 ∪ V1,E), we say G is edge-hyper-Hamiltonian laceable if it is Hamiltonian laceable, and for any vertex v ∈ Vi, i ∈ {0, 1}, any edge e ∈ E(G − v), there is a Hamiltonian path containing e in G − v between any two vertices of V1−i. In this paper, we prove that BHn...

A simple proof of the non-integrability of the first and the second Painlevé equations

Henryk Żołądek (2011)

Banach Center Publications

Similarity:

The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.