The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A general duality principle for the sum of two operators.”

On monotone nonlinear variational inequality problems

Ram U. Verma (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The solvability of a class of monotone nonlinear variational inequality problems in a reflexive Banach space setting is presented.

Interior proximal method for variational inequalities on non-polyhedral sets

Alexander Kaplan, Rainer Tichatschke (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set is described by a system of linear as well as strictly convex constraints. The convergence...

Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets

Alexander Kaplan, Rainer Tichatschke (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we clarify that the interior proximal method developed in [6] (vol. 27 of this journal) for solving variational inequalities with monotone operators converges under essentially weaker conditions concerning the functions describing the "feasible" set as well as the operator of the variational inequality.