The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Addition and subtraction of homothety classes of convex sets.”

Commutativity criterions in locally m-convex algebras.

Aida Toma (2003)

Extracta Mathematicae

Similarity:

In this paper we define the notions of semicommutativity and semicommutativity modulo a linear subspace. We prove some results regarding the semicommutativity or semicommutativity modulo a linear subspace of a sequentially complete m-convex algebra. We show how such results can be applied in order to obtain commutativity criterions for locally m-convex algebras.

p-Envelopes of non-locally convex F-spaces

C. M. Eoff (1992)

Annales Polonici Mathematici

Similarity:

The p-envelope of an F-space is the p-convex analogue of the Fréchet envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with separating dual, then the p-envelope coincides with the Banach envelope only if the space is already locally convex. By contrast, we give examples of F-spaces with are not locally bounded nor locally convex for which the p-envelope and the Fréchet envelope are the same.

Extensions of convex functionals on convex cones

E. Ignaczak, A. Paszkiewicz (1998)

Applicationes Mathematicae

Similarity:

We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.