The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Paracomplex projective models and harmonic maps into them.”

Strongly not relatives Kähler manifolds

Michela Zedda (2017)

Complex Manifolds

Similarity:

In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that...

ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds

Le Mau Hai, Nguyen Van Khue, Pham Hoang Hiep (2007)

Annales Polonici Mathematici

Similarity:

We establish some results on ω-pluripolarity and complete ω-pluripolarity for sets in a compact Kähler manifold X with fundamental form ω. Moreover, we study subextension of ω-psh functions on a hyperconvex domain in X and prove a comparison principle for the class 𝓔(X,ω) recently introduced and investigated by Guedj-Zeriahi.

Some properties of para-Kähler-Walker metrics

Mustafa Özkan, Murat İşcan (2014)

Annales Polonici Mathematici

Similarity:

A Walker 4-manifold is a pseudo-Riemannian manifold (M₄,g) of neutral signature, which admits a field of parallel null 2-planes. We study almost paracomplex structures on 4-dimensional para-Kähler-Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein 4-manifold is a special case of our constructions. ...

3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds

Gabriel Eduard Vîlcu (2010)

Annales Polonici Mathematici

Similarity:

We study 3-submersions from a QR-hypersurface of a quaternionic Kähler manifold onto an almost quaternionic hermitian manifold. We also prove the non-existence of quaternionic submersions between quaternionic Kähler manifolds which are not locally hyper-Kähler.

An extension theorem for Kähler currents with analytic singularities

Tristan C. Collins, Valentino Tosatti (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.

Hartogs type extension theorems on some domains in Kähler manifolds

Takeo Ohsawa (2012)

Annales Polonici Mathematici

Similarity:

Given a locally pseudoconvex bounded domain Ω, in a complex manifold M, the Hartogs type extension theorem is said to hold on Ω if there exists an arbitrarily large compact subset K of Ω such that every holomorphic function on Ω-K is extendible to a holomorphic function on Ω. It will be reported, based on still unpublished papers of the author, that the Hartogs type extension theorem holds in the following two cases: 1) M is Kähler and ∂Ω is C²-smooth and not Levi flat; 2) M is compact...