Displaying similar documents to “On a linear family of affine connections.”

Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus

Frederick M. Goodman, Holly Hauschild (2006)

Fundamenta Mathematicae

Similarity:

The affine Birman-Wenzl-Murakami algebras can be defined algebraically, via generators and relations, or geometrically as algebras of tangles in the solid torus, modulo Kauffman skein relations. We prove that the two versions are isomorphic, and we show that these algebras are free over any ground ring, with a basis similar to a well known basis of the affine Hecke algebra.

Uniqueness of the stereographic embedding

Michael Eastwood (2014)

Archivum Mathematicum

Similarity:

The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.

Ward identities from recursion formulas for correlation functions in conformal field theory

Alexander Zuevsky (2015)

Archivum Mathematicum

Similarity:

A conformal block formulation for the Zhu recursion procedure in conformal field theory which allows to find n -point functions in terms of the lower correlations functions is introduced. Then the Zhu reduction operators acting on a tensor product of VOA modules are defined. By means of these operators we show that the Zhu reduction procedure generates explicit forms of Ward identities for conformal blocks of vertex operator algebras. Explicit examples of Ward identities for the Heisenberg...

Transitive conformal holonomy groups

Jesse Alt (2012)

Open Mathematics

Similarity:

For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act...