Displaying similar documents to “Stochastic dynamics macroscopically governed by the porous medium equation for isothermal flow.”

Generic principles of active transport

Mauro Mobilia, Tobias Reichenbach, Hauke Hinsch, Thomas Franosch, Erwin Frey (2008)

Banach Center Publications

Similarity:

Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intriguing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase transitions. These stochastic many-body features characterize transport processes in biology, soft condensed matter and, possibly, also in nanoscience. Inspired by these applications, a wide class of lattice-gas models has recently been considered. Building on...

Particle Dynamics Methods of Blood Flow Simulations

A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

Various particle methods are widely used to model dynamics of complex media. In this work molecular dynamics and dissipative particles dynamics are applied to model blood flows composed of plasma and erythrocytes. The properties of the homogeneous particle fluid are studied. Capillary flows with erythrocytes are investigated.

On bilinear kinetic equations. Between micro and macro descriptions of biological populations

Mirosław Lachowicz (2003)

Banach Center Publications

Similarity:

In this paper a general class of Boltzmann-like bilinear integro-differential systems of equations (GKM, Generalized Kinetic Models) is considered. It is shown that their solutions can be approximated by the solutions of appropriate systems describing the dynamics of individuals undergoing stochastic interactions (at the "microscopic level"). The rate of approximation can be controlled. On the other hand the GKM result in various models known in biomathematics (at the "macroscopic level")...

Abnormal prediction of dense crowd videos by a purpose-driven lattice Boltzmann model

Yiran Xue, Peng Liu, Ye Tao, Xianglong Tang (2017)

International Journal of Applied Mathematics and Computer Science

Similarity:

In the field of intelligent crowd video analysis, the prediction of abnormal events in dense crowds is a well-known and challenging problem. By analysing crowd particle collisions and characteristics of individuals in a crowd to follow the general trend of motion, a purpose-driven lattice Boltzmann model (LBM) is proposed. The collision effect in the proposed method is measured according to the variation in crowd particle numbers in the image nodes; characteristics of the crowd following...

An introduction to probabilistic methods with applications

Pierre Del Moral, Nicolas G. Hadjiconstantinou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This special volume of the ESAIM Journal, , contains a collection of articles on probabilistic interpretations of some classes of nonlinear integro-differential equations. The selected contributions deal with a wide range of topics in applied probability theory and stochastic analysis, with applications in a variety of scientific disciplines, including physics, biology, fluid mechanics, molecular chemistry, financial mathematics and bayesian statistics. In this preface, we provide...

On the effect of temperature and velocity relaxation in two-phase flow models

Pedro José Martínez Ferrer, Tore Flåtten, Svend Tollak Munkejord (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed...