Displaying similar documents to “On quantum fields and systems with ordered ground state.”

Positive energy quantization of linear dynamics

Jan Dereziński, Christian Gérard (2010)

Banach Center Publications


The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting...

Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes : especially black holes, time machines and a new semi-local vacuum concept

Bernard Kay (2000)

Journées équations aux dérivées partielles


Several situations of physical importance may be modelled by linear quantum fields propagating in fixed spacetime-dependent classical background fields. For example, the quantum Dirac field in a strong and/or time-dependent external electromagnetic field accounts for the creation of electron-positron pairs out of the vacuum. Also, the theory of linear quantum fields propagating on a given background curved spacetime is the appropriate framework for the derivation of black-hole evaporation...

Two Hartree-Fock models for the vacuum polarization

Philippe Gravejat, Christian Hainzl, Mathieu Lewin, Éric Séré (2012)

Journées Équations aux dérivées partielles


We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.