Two Hartree-Fock models for the vacuum polarization

Philippe Gravejat[1]; Christian Hainzl[2]; Mathieu Lewin[3]; Éric Séré[4]

  • [1] Centre de Mathématiques Laurent Schwartz (UMR 7640) École Polytechnique F-91128 Palaiseau Cedex France
  • [2] Mathematisches Institut Auf der Morgenstelle 10 D-72076 Tübingen Germany
  • [3] Centre National de la Recherche Scientifique and Laboratoire de Mathématiques (UMR 8088) Université de Cergy-Pontoise F-95000 Cergy-Pontoise France
  • [4] Centre de Recherche en Mathématiques de la Décision (UMR 7534) Université Paris-Dauphine Place du Maréchal De Lattre de Tassigny F-75775 Paris Cedex 16 France

Journées Équations aux dérivées partielles (2012)

  • Volume: 208, Issue: 2, page 1-31
  • ISSN: 0752-0360

Abstract

top
We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.

How to cite

top

Gravejat, Philippe, et al. "Two Hartree-Fock models for the vacuum polarization." Journées Équations aux dérivées partielles 208.2 (2012): 1-31. <http://eudml.org/doc/275422>.

@article{Gravejat2012,
abstract = {We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.},
affiliation = {Centre de Mathématiques Laurent Schwartz (UMR 7640) École Polytechnique F-91128 Palaiseau Cedex France; Mathematisches Institut Auf der Morgenstelle 10 D-72076 Tübingen Germany; Centre National de la Recherche Scientifique and Laboratoire de Mathématiques (UMR 8088) Université de Cergy-Pontoise F-95000 Cergy-Pontoise France; Centre de Recherche en Mathématiques de la Décision (UMR 7534) Université Paris-Dauphine Place du Maréchal De Lattre de Tassigny F-75775 Paris Cedex 16 France},
author = {Gravejat, Philippe, Hainzl, Christian, Lewin, Mathieu, Séré, Éric},
journal = {Journées Équations aux dérivées partielles},
keywords = {Vacuum polarization; Dirac sea; Hartree-Fock approximation; Bogoliubov-Dirac-Fock model; Pauli-Villars regularization; charge renormalization; quantum electrodynamics; divergent Feynman integrals; vacuum polarization; external electromagnetic source; photon propagator; Dirac vacuum},
language = {eng},
number = {2},
pages = {1-31},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Two Hartree-Fock models for the vacuum polarization},
url = {http://eudml.org/doc/275422},
volume = {208},
year = {2012},
}

TY - JOUR
AU - Gravejat, Philippe
AU - Hainzl, Christian
AU - Lewin, Mathieu
AU - Séré, Éric
TI - Two Hartree-Fock models for the vacuum polarization
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
VL - 208
IS - 2
SP - 1
EP - 31
AB - We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.
LA - eng
KW - Vacuum polarization; Dirac sea; Hartree-Fock approximation; Bogoliubov-Dirac-Fock model; Pauli-Villars regularization; charge renormalization; quantum electrodynamics; divergent Feynman integrals; vacuum polarization; external electromagnetic source; photon propagator; Dirac vacuum
UR - http://eudml.org/doc/275422
ER -

References

top
  1. V. Bach, J.-M. Barbaroux, B. Helffer, H. Siedentop, On the stability of the relativistic electron-positron field, Commun. Math. Phys. 201 (1999), 445-460 Zbl1024.81056MR1682210
  2. P.M.S. Blackett, G.P.S. Occhialini, Some photographs of the tracks of penetrating radiation, Proc. Roy. Soc. Lond. A 139 (1933), 699-726 
  3. H.B.G. Casimir, On the attraction between two perfectly conducting plates, Proc. Kon. Nederland. Akad. Wetensch. 51 (1948), 793-795 Zbl0031.19005
  4. H.B.G. Casimir, D. Polder, The influence of retardation on the London-van der Waals forces, Phys. Rev. 73 (1948), 360-372 Zbl0037.28103
  5. P. Chaix, D. Iracane, From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B 22 (1989), 3791-3814 
  6. P. Chaix, D. Iracane, P.-L. Lions, From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J. Phys. B 22 (1989), 3815-3828 
  7. P.A.M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. Lond. A 117 (1928), 610-624 Zbl54.0973.01
  8. P.A.M. Dirac, The quantum theory of the electron. II, Proc. Roy. Soc. Lond. A 118 (1928), 351-361 Zbl54.0973.02
  9. P.A.M. Dirac, A theory of electrons and protons, Proc. Roy. Soc. Lond. A 126 (1930), 360-365 Zbl56.0751.02
  10. F.J. Dyson, Advanced quantum mechanics, (2007), World Scientific, Hackensack, NJ Zbl1126.81003MR2313112
  11. E. Engel, Relativistic density functional theory: foundations and basic formalism, Relativistic electronic structure theory, part 1. Fundamentals 11 (2002), 524-624, SchwerdtfegerP.P. 
  12. M.J. Esteban, M. Lewin, É. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. 45 (2008), 535-593 Zbl1288.49016MR2434346
  13. V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zts. f. Phys. 61 (1930), 126-148 Zbl56.1313.08
  14. W.H. Furry, A symmetry theorem in the positron theory, Phys. Rev. 51 (1937), 125-129 Zbl0015.42506
  15. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron g value and QED, Phys. Rev. Lett. 97 (2006) 
  16. P. Gravejat, C. Hainzl, M. Lewin, É. Séré, Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields, Preprint (2012) Zbl1269.81202MR3035987
  17. P. Gravejat, M. Lewin, É. Séré, Ground state and charge renormalization in a nonlinear model of relativistic atoms, Commun. Math. Phys. 286 (2009), 179-215 Zbl1180.81155MR2470929
  18. P. Gravejat, M. Lewin, É. Séré, Renormalization and asymptotic expansion of Dirac’s polarized vacuum, Commun. Math. Phys. 306 (2011), 1-33 Zbl1221.81168MR2819417
  19. W. Greiner, J. Reinhardt, Quantum electrodynamics, (2009), Springer-Verlag, Berlin Zbl0803.00010MR1321143
  20. C. Hainzl, M. Lewin, É. Séré, Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation, Commun. Math. Phys. 257 (2005), 515-562 Zbl1115.81061MR2164942
  21. C. Hainzl, M. Lewin, É. Séré, Self-consistent solution for the polarized vacuum in a no-photon QED model, J. Phys. A, Math. Gen. 38 (2005), 4483-4499 Zbl1073.81677MR2147635
  22. C. Hainzl, M. Lewin, É. Séré, Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics, Arch. Rat. Mech. Anal. 192 (2009), 453-499 Zbl1173.81025MR2505361
  23. C. Hainzl, M. Lewin, É. Séré, J.-P. Solovej, A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics, Phys. Rev. A 76 (2007) 
  24. C. Hainzl, M. Lewin, J.-P. Solovej, The mean-field approximation in quantum electrodynamics. The no-photon case, Commun. Pure Appl. Math. 60 (2007), 546-596 Zbl1113.81126MR2290710
  25. D. Hartree, The wave-mechanics of an atom with a non-coulomb central field. Part I, Proc. Camb. Philos. Soc. 24 (1928), 89-312 Zbl54.0966.05
  26. W. Heisenberg, Bemerkungen zur diracschen theorie des positrons, Zts. f. Phys. 90 (1934), 209-231 Zbl0010.04104
  27. W. Heisenberg, H. Euler, Folgerungen aus der diracschen theorie des positrons, Zts. f. Phys. 98 (1936), 714-732 Zbl0013.18503
  28. W. Hunziker, I.M. Sigal, The quantum N-body problem, J. Math. Phys. 41 (2000), 3348-3509 Zbl0981.81026MR1768629
  29. W.E. Lamb, R.C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72 (1947), 241-243 
  30. L.D. Landau, On the quantum theory of fields. Bohr Volume, (1955), Pergamon Press, Oxford MR75092
  31. L.D. Landau, I.Y. Pomeranchuk, On point interaction in quantum electrodynamics, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 489-492 Zbl0067.21602MR73476
  32. M. Lewin, Renormalization of Dirac’s polarized vacuum, Mathematical results in quantum physics (2011), 45-59, World Scientific Zbl1238.81101MR2885159
  33. M. Lewin, A nonlinear variational problem in relativistic quantum mechanics, Proceeding of the sixth European Congress of Mathematics (2013), European Mathematical Society 
  34. E.H. Lieb, Variational principles for many-fermion systems, Phys. Rev. Lett. 46 (1981), 457-459 MR601336
  35. E.H. Lieb, Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A 29 (1984), 3018-3028 
  36. L.I. Mandelshtam, I.E. Tamm, The uncertainty relation between energy and time in nonrelativistic quantum mechanics, J. of Phys. (USSR) 9 (1945), 249-254 Zbl0060.45003MR15334
  37. G. Nenciu, G. Scharf, On regular external fields in quantum electrodynamics, Helv. Phys. Acta 51 (1978), 412-424 MR507904
  38. W. Pauli, M.E. Rose, Remarks on the polarization effects in the positron theory, Phys. Rev. 49 (1936), 462-465 Zbl0013.37301
  39. W. Pauli, F. Villars, On the invariant regularization in relativistic quantum theory, Rev. Modern Phys. 21 (1949), 434-444 Zbl0037.12503MR32504
  40. M.E. Peskin, D.V. Schroeder, An introduction to quantum field theory, 94 (1995), Westview Press, New-York MR1402248
  41. M. Reed, B. Simon, Methods of modern mathematical physics IV. Analysis of operators, (1980), Academic Press, New-York Zbl0401.47001MR751959
  42. J. Sabin, Static electron-positron pair creation in strong fields for a nonlinear Dirac model, Preprint (2001) Zbl1272.81199
  43. J. Schwinger, Quantum electrodynamics. I. A covariant formulation, Phys. Rev. 74 (1948), 1439-1461 Zbl0032.09404MR27714
  44. R. Serber, Linear modifications in the Maxwell field equations, Phys. Rev. 48 (1935), 49-54 Zbl0012.13604
  45. R. Serber, A note on positron theory and proper energies, Phys. Rev. 49 (1936), 545-550 
  46. J.-P. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math. 104 (1991), 291-311 Zbl0732.35066MR1098611
  47. J.-P. Solovej, The ionization conjecture in Hartree-Fock theory, Annals of Math. 158 (2003), 509-576 Zbl1106.81081MR2018928
  48. B. Thaller, The Dirac equation, (1992), Springer-Verlag, Berlin Zbl0765.47023MR1219537
  49. E.A. Uehling, Polarization effects in the positron theory, Phys. Rev. 48 (1935), 55-63 Zbl0012.13605

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.