Huge random structures and mean field models for spin glasses.
Talagrand, Michel (1998)
Documenta Mathematica
Similarity:
Talagrand, Michel (1998)
Documenta Mathematica
Similarity:
Francesco Nicolò (1986)
Recherche Coopérative sur Programme n°25
Similarity:
Derek W. Robinson (1969)
Recherche Coopérative sur Programme n°25
Similarity:
Derek W. Robinson (1973)
Recherche Coopérative sur Programme n°25
Similarity:
Rodrigues, Waldyr A. jun. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
W. Nowacki (1985)
Banach Center Publications
Similarity:
Wei-Kuo Chen (2014)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We study a spin system with both mixed even-spin Sherrington–Kirkpatrick (SK) couplings and Curie–Weiss (CW) interaction. Our main results are: (i) The thermodynamic limit of the free energy is given by a variational formula involving the free energy of the SK model with a change in the external field. (ii) In the presence of a centered Gaussian external field, the positivity of the overlap and the extended Ghirlanda–Guerra identities hold on a dense subset of the temperature parameters....
David Márquez-Carreras (2007)
Applicationes Mathematicae
Similarity:
This paper is devoted to a detailed and rigorous study of the magnetization at high temperature for a p-spin interaction model with external field, generalizing the Sherrington-Kirkpatrick model. In particular, we prove that (the mean of a spin with respect to the Gibbs measure) converges to an explicitly given random variable, and that ⟨σ₁⟩,...,⟨σₙ⟩ are asymptotically independent.
Takehiko Takabayasi (1956-1957)
Séminaire L. de Broglie. Théories physiques
Similarity:
Bogolyubov, N.M. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Pierluigi Contucci, Francesco Unguendoli (2005)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
For a finite dimensional spin-glass model we prove low temperature local order i.e. the property of concentration of the overlap distribution close to the value 1. The theorem hold for both local observables and for products of observables at arbitrary mutual distance: when the Hamiltonian includes the Edwards-Anderson interaction we prove bond local order, when it includes the random-field interaction we prove site local order.
P. Collet, J.-P. Eckmann, V. Glaser, A. Martin (1983)
Recherche Coopérative sur Programme n°25
Similarity:
Pradhan, Anirudh, Yadav, Padmini (2009)
International Journal of Mathematics and Mathematical Sciences
Similarity: