Displaying similar documents to “Universal Teichmüller space and Fourier series.”

Algebrability of the set of non-convergent Fourier series

Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)

Studia Mathematica

Similarity:

We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.

Riemann surfaces with boundary and natural triangulations of the Teichmüller space

Gabriele Mondello (2011)

Journal of the European Mathematical Society

Similarity:

We compare some natural triangulations of the Teichmüller space of hyperbolic surfaces with geodesic boundary and of some bordifications. We adapt Scannell–Wolf’s proof to show that grafting semi-infinite cylinders at the ends of hyperbolic surfaces with fixed boundary lengths is a homeomorphism. This way, we construct a family of equivariant triangulations of the Teichmüller space of punctured surfaces that interpolates between Bowditch–Epstein–Penner’s (using the spine construction)...