The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Expansion of an atomic operator.”

A characterization of complete atomic Boolean algebra.

Francesc Esteva (1977)

Stochastica

Similarity:

In this note we give a characterization of complete atomic Boolean algebras by means of complete atomic lattices. We find that unicity of the representation of the maximum as union of atoms and Lambda-infinite distributivity law are necessary and sufficient conditions for the lattice to be a complete atomic Boolean algebra.

A representation theorem for certain Boolean lattices.

José Ríos Montes (1988)

Publicacions Matemàtiques

Similarity:

Let R be an associative ring with 1 and R-tors the somplete Brouwerian lattice of all hereditary torsion theories on the category of left R-modules. A well known result asserts that R is a left semiartinian ring iff R-tors is a complete atomic Boolean lattice. In this note we prove that if L is a complete atomic Boolean lattice then there exists a left semiartinian ring R such that L is lattice-isomorphic to R-tors.

Boolean powers

P. Ribenboin (1969)

Fundamenta Mathematicae

Similarity:

Zero-dimensional Dugundji spaces admit profinite lattice structures

Lutz Heindorf (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.