Bertrand curves in Galilean space and their characterizations
Alper Osman Öğrenmiş, Handan Öztekin, Mahmut Ergüt (2009)
Kragujevac Journal of Mathematics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Alper Osman Öğrenmiş, Handan Öztekin, Mahmut Ergüt (2009)
Kragujevac Journal of Mathematics
Similarity:
Parenti, Paola (2004)
Beiträge zur Algebra und Geometrie
Similarity:
Carvalho, Cícero (2002)
Beiträge zur Algebra und Geometrie
Similarity:
Kazim İlarslan, Emilija Nešović (2009)
Publications de l'Institut Mathématique
Similarity:
Miroslava Petrović-Torgašev (2002)
Kragujevac Journal of Mathematics
Similarity:
Izumiya, Shyuichi, Takeuchi, Nobuko (2003)
Beiträge zur Algebra und Geometrie
Similarity:
G. Mora (2005)
RACSAM
Similarity:
En este artículo presentamos una caracterización de las curvas de Peano como límite uniforme de sucesiones de curvas α-densas en el compacto que es llenado por la curva de Peano. Estas curvas α-densas deben tener densidades tendiendo a cero y sus funciones coordenadas deben de ser de variación tendiendo a infinito cuando α tiende a cero.
Abdón, Miriam, Torres, Fernando (2005)
Beiträge zur Algebra und Geometrie
Similarity:
Pasarescu, Ovidiu (2004)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 14H45, 14H50, 14J26. We construct linearly normal curves covering a big range from P^n, n ≥ 6 (Theorems 1.7, 1.9). The problem of existence of such algebraic curves in P^3 has been solved in [4], and extended to P^4 and P^5 in [10]. In both these papers is used the idea appearing in [4] and consisting in adding hyperplane sections to the curves constructed in [6] (for P^3) and [15, 11] (for P^4 and P^5) on some special surfaces. In...
Hà Huy Vui, Pham Tien Son (1999)
Annales Polonici Mathematici
Similarity:
We determine bifurcation sets of families of affine curves and study the topology of such families.
Marco Riccardi, Artur Korniłowicz (2012)
Formalized Mathematics
Similarity:
Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]
Düldül, Mustafa, Kuruoğlu, Nuri (2008)
APPS. Applied Sciences
Similarity: