Fundamental Group of n-sphere for n ≥ 2
Marco Riccardi; Artur Korniłowicz
Formalized Mathematics (2012)
- Volume: 20, Issue: 2, page 97-104
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMarco Riccardi, and Artur Korniłowicz. "Fundamental Group of n-sphere for n ≥ 2." Formalized Mathematics 20.2 (2012): 97-104. <http://eudml.org/doc/268254>.
@article{MarcoRiccardi2012,
abstract = {Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]},
author = {Marco Riccardi, Artur Korniłowicz},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {97-104},
title = {Fundamental Group of n-sphere for n ≥ 2},
url = {http://eudml.org/doc/268254},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Marco Riccardi
AU - Artur Korniłowicz
TI - Fundamental Group of n-sphere for n ≥ 2
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 2
SP - 97
EP - 104
AB - Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]
LA - eng
UR - http://eudml.org/doc/268254
ER -
References
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [11] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
- [12] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. FormalizedMathematics, 12(3):251-260, 2004.
- [13] Artur Korniłowicz. The fundamental group of convex subspaces of En T. Formalized Mathematics, 12(3):295-299, 2004.
- [14] Artur Korniłowicz. On the isomorphism of fundamental groups. Formalized Mathematics, 12(3):391-396, 2004.
- [15] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En T. Formalized Mathematics, 12(3):301-306, 2004.
- [16] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004.
- [17] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. Zbl0956.57001
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- [20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [21] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.[Crossref] Zbl1276.57023
- [22] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41-45, 2012, doi: 10.2478/v10037-012-0006-0.[Crossref] Zbl1276.57022
- [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.