Fundamental Group of n-sphere for n ≥ 2

Marco Riccardi; Artur Korniłowicz

Formalized Mathematics (2012)

  • Volume: 20, Issue: 2, page 97-104
  • ISSN: 1426-2630

Abstract

top
Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]

How to cite

top

Marco Riccardi, and Artur Korniłowicz. "Fundamental Group of n-sphere for n ≥ 2." Formalized Mathematics 20.2 (2012): 97-104. <http://eudml.org/doc/268254>.

@article{MarcoRiccardi2012,
abstract = {Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]},
author = {Marco Riccardi, Artur Korniłowicz},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {97-104},
title = {Fundamental Group of n-sphere for n ≥ 2},
url = {http://eudml.org/doc/268254},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Marco Riccardi
AU - Artur Korniłowicz
TI - Fundamental Group of n-sphere for n ≥ 2
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 2
SP - 97
EP - 104
AB - Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]
LA - eng
UR - http://eudml.org/doc/268254
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. [4] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  5. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  6. [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  7. [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  8. [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  9. [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  10. [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991. 
  11. [11] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997. 
  12. [12] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. FormalizedMathematics, 12(3):251-260, 2004. 
  13. [13] Artur Korniłowicz. The fundamental group of convex subspaces of En T. Formalized Mathematics, 12(3):295-299, 2004. 
  14. [14] Artur Korniłowicz. On the isomorphism of fundamental groups. Formalized Mathematics, 12(3):391-396, 2004. 
  15. [15] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En T. Formalized Mathematics, 12(3):301-306, 2004. 
  16. [16] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004. 
  17. [17] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. Zbl0956.57001
  18. [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  19. [19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990. 
  20. [20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  21. [21] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.[Crossref] Zbl1276.57023
  22. [22] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41-45, 2012, doi: 10.2478/v10037-012-0006-0.[Crossref] Zbl1276.57022
  23. [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  24. [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  25. [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.