Displaying similar documents to “Integral weighted convolution operators.”

Weighted composition operators on weighted Lorentz spaces

İlker Eryilmaz (2012)

Colloquium Mathematicae

Similarity:

The boundedness, compactness and closedness of the range of weighted composition operators acting on weighted Lorentz spaces L(p,q,wdμ) for 1 < p ≤ ∞, 1 ≤ q ≤ ∞ are characterized.

On the shift operators.

Aggour, M.M. (1996)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Backward extensions of hyperexpansive operators

Zenon J. Jabłoński, Il Bong Jung, Jan Stochel (2006)

Studia Mathematica

Similarity:

The concept of k-step full backward extension for subnormal operators is adapted to the context of completely hyperexpansive operators. The question of existence of k-step full backward extension is solved within this class of operators with the help of an operator version of the Levy-Khinchin formula. Some new phenomena in comparison with subnormal operators are found and related classes of operators are discussed as well.

A remark concerning Putinar's model of hyponormal weighted shifts

Vasile Lauric (2018)

Czechoslovak Mathematical Journal

Similarity:

The question whether a hyponormal weighted shift with trace class self-commutator is the compression modulo the Hilbert-Schmidt class of a normal operator, remains open. It is natural to ask whether Putinar's construction through which he proved that hyponormal operators are subscalar operators provides the answer to the above question. We show that the normal extension provided by Putinar's theory does not lead to the extension that would provide a positive answer to the question. ...

Dynamics of differentiation operators on generalized weighted Bergman spaces

Liang Zhang, Ze-Hua Zhou (2015)

Open Mathematics

Similarity:

The chaos of the differentiation operator on generalized weighted Bergman spaces of entire functions has been characterized recently by Bonet and Bonilla in [CAOT 2013], when the differentiation operator is continuous. Motivated by those, we investigate conditions to ensure that finite many powers of differentiation operators are disjoint hypercyclic on generalized weighted Bergman spaces of entire functions.

The Cesàro and related operators, a survey

V. G. Miller (2007)

Banach Center Publications

Similarity:

We provide a survey of properties of the Cesàro operator on Hardy and weighted Bergman spaces, along with its connections to semigroups of weighted composition operators. We also describe recent developments regarding Cesàro-like operators and indicate some open questions and directions of future research.

Complex symmetric weighted composition operators on the Hardy space

Cao Jiang, Shi-An Han, Ze-Hua Zhou (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper identifies a class of complex symmetric weighted composition operators on H 2 ( 𝔻 ) that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional. ...