Displaying similar documents to “Direct computation of operational matrices for polynomial bases.”

A fixed point method to compute solvents of matrix polynomials

Fernando Marcos, Edgar Pereira (2010)

Mathematica Bohemica

Similarity:

Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.

Matrix quadratic equations column/row reduced factorizations and an inertia theorem for matrix polynomials

Irina Karelin, Leonid Lerer (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of...

An introduction to hierarchical matrices

Wolfgang Hackbusch, Lars Grasedyck, Steffen Börm (2002)

Mathematica Bohemica

Similarity:

We give a short introduction to a method for the data-sparse approximation of matrices resulting from the discretisation of non-local operators occurring in boundary integral methods or as the inverses of partial differential operators. The result of the approximation will be the so-called hierarchical matrices (or short -matrices). These matrices form a subset of the set of all matrices and have a data-sparse representation. The essential operations for these matrices (matrix-vector...

Some relations on Humbert matrix polynomials

Ayman Shehata (2016)

Mathematica Bohemica

Similarity:

The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix...