A fixed point method to compute solvents of matrix polynomials
Fernando Marcos; Edgar Pereira
Mathematica Bohemica (2010)
- Volume: 135, Issue: 4, page 355-362
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMarcos, Fernando, and Pereira, Edgar. "A fixed point method to compute solvents of matrix polynomials." Mathematica Bohemica 135.4 (2010): 355-362. <http://eudml.org/doc/196342>.
@article{Marcos2010,
abstract = {Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.},
author = {Marcos, Fernando, Pereira, Edgar},
journal = {Mathematica Bohemica},
keywords = {fixed point method; matrix polynomial; matrix differential equation; fixed point method; matrix polynomial; matrix differential equation; numerical examples},
language = {eng},
number = {4},
pages = {355-362},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A fixed point method to compute solvents of matrix polynomials},
url = {http://eudml.org/doc/196342},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Marcos, Fernando
AU - Pereira, Edgar
TI - A fixed point method to compute solvents of matrix polynomials
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 355
EP - 362
AB - Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.
LA - eng
KW - fixed point method; matrix polynomial; matrix differential equation; fixed point method; matrix polynomial; matrix differential equation; numerical examples
UR - http://eudml.org/doc/196342
ER -
References
top- Davis, G. J., 10.1137/0902014, SIAM J. Scient. Computing 2 (1981), 164-175. (1981) Zbl0467.65021MR0622713DOI10.1137/0902014
- Dennis, E., Traub, J. F., Weber, R. P., On the Matrix Polynomial, Lambda-Matrix and Block Eigenvalue Problems, Computer Science Department, Technical Report, Cornell University, Ithaca, New York and Carnegie-Mellon University, Pittsburgh, Pennsylvania (1971). (1971)
- Dennis, J. E., Traub, J. F., Weber, R. P., 10.1137/0713065, SIAM J. Numer. Anal. 13 (1976), 831-845. (1976) Zbl0361.15013MR0432675DOI10.1137/0713065
- Dennis, J. E., Traub, J. F., Weber, R. P., 10.1137/0715034, SIAM J. Numer. Anal. 15 (1978), 523-533. (1978) Zbl0386.65012MR0471278DOI10.1137/0715034
- Gohberg, I., Lancaster, P., Rodman, L., Matrix Polynomials, Academic Press, New York (1982). (1982) Zbl0486.15008MR0662418
- Higham, N. J., Kim, H. M., 10.1137/S0895479899350976, SIAM J. Matrix Anal. Appl. 23 (2001), 303-316. (2001) MR1871314DOI10.1137/S0895479899350976
- Higham, N. J., Kim, H. M., 10.1093/imanum/20.4.499, IMA J. Numer. Anal. 20 (2000), 499-519. (2000) Zbl0966.65040MR1795295DOI10.1093/imanum/20.4.499
- Holmes, R. B., 10.2307/2315890, Am. Math. Mon. 75 (1968), 163-166. (1968) Zbl0156.38202MR0227783DOI10.2307/2315890
- Kratz, W., Stickel, E., 10.1093/imanum/7.3.355, IMA J. Numer. Anal. 7 (1987), 355-369. (1987) Zbl0631.65040MR0968530DOI10.1093/imanum/7.3.355
- Lancaster, P., Lambda-Matrices and Vibrating Systems, Pergamon Press, New York (1966). (1966) Zbl0146.32003MR0210345
- Lancaster, P., 10.1016/0024-3795(77)90052-0, Linear Algebra Appl. 18 (1977), 213-222. (1977) Zbl0388.15004MR0485917DOI10.1016/0024-3795(77)90052-0
- Lancaster, P., Tismenetsky, M., The Theory of Matrices, 2nd edition, Academic Press, New York (1985). (1985) MR0792300
- Pereira, E., Vitória, J., 10.1016/S0898-1221(01)00231-0, Comput. Math. Appl. 42 (2001), 1177-1188. (2001) MR1851235DOI10.1016/S0898-1221(01)00231-0
- Pereira, E., Serodio, R., Vitória, J., Newton's method for matrix polynomials, Int. J. Math. Game Theory Algebra 17 (2008), 183-188. (2008) Zbl1177.65065MR2353584
- Shih, M., Wu, J., 10.4064/sm-131-2-143-148, Stud. Math. 2 (1998), 143-148. (1998) Zbl0924.47044MR1636415DOI10.4064/sm-131-2-143-148
- Tisseur, F., Meerbergen, K., 10.1137/S0036144500381988, SIAM Rev. 43 (2001), 235-286. (2001) Zbl0985.65028MR1861082DOI10.1137/S0036144500381988
- Tsai, J. S. H., Shieh, L. S., Shen, T. T. C., 10.1016/0898-1221(88)90004-1, Comput. Math. Appl. 16 (1988), 683-699. (1988) MR0973957DOI10.1016/0898-1221(88)90004-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.