A fixed point method to compute solvents of matrix polynomials

Fernando Marcos; Edgar Pereira

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 4, page 355-362
  • ISSN: 0862-7959

Abstract

top
Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.

How to cite

top

Marcos, Fernando, and Pereira, Edgar. "A fixed point method to compute solvents of matrix polynomials." Mathematica Bohemica 135.4 (2010): 355-362. <http://eudml.org/doc/196342>.

@article{Marcos2010,
abstract = {Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.},
author = {Marcos, Fernando, Pereira, Edgar},
journal = {Mathematica Bohemica},
keywords = {fixed point method; matrix polynomial; matrix differential equation; fixed point method; matrix polynomial; matrix differential equation; numerical examples},
language = {eng},
number = {4},
pages = {355-362},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A fixed point method to compute solvents of matrix polynomials},
url = {http://eudml.org/doc/196342},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Marcos, Fernando
AU - Pereira, Edgar
TI - A fixed point method to compute solvents of matrix polynomials
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 355
EP - 362
AB - Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.
LA - eng
KW - fixed point method; matrix polynomial; matrix differential equation; fixed point method; matrix polynomial; matrix differential equation; numerical examples
UR - http://eudml.org/doc/196342
ER -

References

top
  1. Davis, G. J., 10.1137/0902014, SIAM J. Scient. Computing 2 (1981), 164-175. (1981) Zbl0467.65021MR0622713DOI10.1137/0902014
  2. Dennis, E., Traub, J. F., Weber, R. P., On the Matrix Polynomial, Lambda-Matrix and Block Eigenvalue Problems, Computer Science Department, Technical Report, Cornell University, Ithaca, New York and Carnegie-Mellon University, Pittsburgh, Pennsylvania (1971). (1971) 
  3. Dennis, J. E., Traub, J. F., Weber, R. P., 10.1137/0713065, SIAM J. Numer. Anal. 13 (1976), 831-845. (1976) Zbl0361.15013MR0432675DOI10.1137/0713065
  4. Dennis, J. E., Traub, J. F., Weber, R. P., 10.1137/0715034, SIAM J. Numer. Anal. 15 (1978), 523-533. (1978) Zbl0386.65012MR0471278DOI10.1137/0715034
  5. Gohberg, I., Lancaster, P., Rodman, L., Matrix Polynomials, Academic Press, New York (1982). (1982) Zbl0486.15008MR0662418
  6. Higham, N. J., Kim, H. M., 10.1137/S0895479899350976, SIAM J. Matrix Anal. Appl. 23 (2001), 303-316. (2001) MR1871314DOI10.1137/S0895479899350976
  7. Higham, N. J., Kim, H. M., 10.1093/imanum/20.4.499, IMA J. Numer. Anal. 20 (2000), 499-519. (2000) Zbl0966.65040MR1795295DOI10.1093/imanum/20.4.499
  8. Holmes, R. B., 10.2307/2315890, Am. Math. Mon. 75 (1968), 163-166. (1968) Zbl0156.38202MR0227783DOI10.2307/2315890
  9. Kratz, W., Stickel, E., 10.1093/imanum/7.3.355, IMA J. Numer. Anal. 7 (1987), 355-369. (1987) Zbl0631.65040MR0968530DOI10.1093/imanum/7.3.355
  10. Lancaster, P., Lambda-Matrices and Vibrating Systems, Pergamon Press, New York (1966). (1966) Zbl0146.32003MR0210345
  11. Lancaster, P., 10.1016/0024-3795(77)90052-0, Linear Algebra Appl. 18 (1977), 213-222. (1977) Zbl0388.15004MR0485917DOI10.1016/0024-3795(77)90052-0
  12. Lancaster, P., Tismenetsky, M., The Theory of Matrices, 2nd edition, Academic Press, New York (1985). (1985) MR0792300
  13. Pereira, E., Vitória, J., 10.1016/S0898-1221(01)00231-0, Comput. Math. Appl. 42 (2001), 1177-1188. (2001) MR1851235DOI10.1016/S0898-1221(01)00231-0
  14. Pereira, E., Serodio, R., Vitória, J., Newton's method for matrix polynomials, Int. J. Math. Game Theory Algebra 17 (2008), 183-188. (2008) Zbl1177.65065MR2353584
  15. Shih, M., Wu, J., 10.4064/sm-131-2-143-148, Stud. Math. 2 (1998), 143-148. (1998) Zbl0924.47044MR1636415DOI10.4064/sm-131-2-143-148
  16. Tisseur, F., Meerbergen, K., 10.1137/S0036144500381988, SIAM Rev. 43 (2001), 235-286. (2001) Zbl0985.65028MR1861082DOI10.1137/S0036144500381988
  17. Tsai, J. S. H., Shieh, L. S., Shen, T. T. C., 10.1016/0898-1221(88)90004-1, Comput. Math. Appl. 16 (1988), 683-699. (1988) MR0973957DOI10.1016/0898-1221(88)90004-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.