On polynomials taking small values at integral arguments II
Roberto Dvornicich, Shih Ping Tung, Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Roberto Dvornicich, Shih Ping Tung, Umberto Zannier (2003)
Acta Arithmetica
Similarity:
H. Kaufman, Mira Bhargava (1965)
Collectanea Mathematica
Similarity:
I. R. Shafarevich (1999)
The Teaching of Mathematics
Similarity:
Ha Huy Vui, Pham Tien Son (2008)
Annales Polonici Mathematici
Similarity:
Let f: ℝⁿ → ℝ be a nonconstant polynomial function. Using the information from the "curve of tangency" of f, we provide a method to determine the Łojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Łojasiewicz exponent at infinity is finite or not. Then we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Łojasiewicz exponent at infinity of f and the problem of...
Mira Bhargava (1964)
Collectanea Mathematica
Similarity:
Shukla, D.P. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Agrawal, Hukum Chand (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Zimmermann, Karl (2007)
The New York Journal of Mathematics [electronic only]
Similarity:
C. Fong, G. Lumer, E. Nordgren, H. Radjavi, P. Rosenthal (1995)
Studia Mathematica
Similarity:
We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
M. Filaseta, T.-Y. Lam (2002)
Acta Arithmetica
Similarity:
K. Kubota (1973)
Acta Arithmetica
Similarity:
Miloš Kössler (1951)
Czechoslovak Mathematical Journal
Similarity: