On polynomials taking small values at integral arguments II
Roberto Dvornicich, Shih Ping Tung, Umberto Zannier (2003)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Roberto Dvornicich, Shih Ping Tung, Umberto Zannier (2003)
Acta Arithmetica
Similarity:
H. Kaufman, Mira Bhargava (1965)
Collectanea Mathematica
Similarity:
I. R. Shafarevich (1999)
The Teaching of Mathematics
Similarity:
Ha Huy Vui, Pham Tien Son (2008)
Annales Polonici Mathematici
Similarity:
Let f: ℝⁿ → ℝ be a nonconstant polynomial function. Using the information from the "curve of tangency" of f, we provide a method to determine the Łojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Łojasiewicz exponent at infinity is finite or not. Then we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Łojasiewicz exponent at infinity of f and the problem of...
Mira Bhargava (1964)
Collectanea Mathematica
Similarity:
Shukla, D.P. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Agrawal, Hukum Chand (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Zimmermann, Karl (2007)
The New York Journal of Mathematics [electronic only]
Similarity:
C. Fong, G. Lumer, E. Nordgren, H. Radjavi, P. Rosenthal (1995)
Studia Mathematica
Similarity:
We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
M. Filaseta, T.-Y. Lam (2002)
Acta Arithmetica
Similarity:
K. Kubota (1973)
Acta Arithmetica
Similarity:
Miloš Kössler (1951)
Czechoslovak Mathematical Journal
Similarity: