Sum list coloring arrays.
Isaak, Garth (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Isaak, Garth (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Mubayi, Dhruv (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Oleg V. Borodin, Anna O. Ivanova (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
Hoffman, Dean G., Johnson, Peter D.jun. (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Albertson, Michael O., Hutchinson, Joan P. (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Caro, Yair, Yuster, Raphael (1999)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Éric Sopena, Jiaojiao Wu (2013)
Discussiones Mathematicae Graph Theory
Similarity:
An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals...
Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)
Discussiones Mathematicae Graph Theory
Similarity:
We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers....
Arnfried Kemnitz, Peter Mihók, Margit Voigt (2013)
Discussiones Mathematicae Graph Theory
Similarity:
Let r, s ∈ N, r ≥ s, and P and Q be two additive and hereditary graph properties. A (P,Q)-total (r, s)-coloring of a graph G = (V,E) is a coloring of the vertices and edges of G by s-element subsets of Zr such that for each color i, 0 ≤ i ≤ r − 1, the vertices colored by subsets containing i induce a subgraph of G with property P, the edges colored by subsets containing i induce a subgraph of G with property Q, and color sets of incident vertices and edges are disjoint. The fractional...
Schauz, Uwe (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Liu, Xikui, Li, Yan (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Klazar, Martin (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity: